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Category Specific Dictionary Learning for Attribute
Specific Feature Selection
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Abstract—Attributes, as mid-level features, have demonstrated
great potential in visual recognition tasks due to their excellent
propagation capability through different categories. However,
existing attribute learning methods are prone to learning the
correlated attributes. To discover the genuine attribute specific
features, many feature selection methods have been proposed.
However, these feature selection methods are implemented at
the level of raw features which might be very noisy and these
methods usually fail to consider the structural information in the
feature space. To address this issue, in this paper, we propose a
label constrained dictionary learning approach combined with a
multilayer filter. The feature selection is implemented at dictio-
nary level which can better preserve the structural information.
The label constrained dictionary learning suppresses the intra-
class noise by encouraging the sparse representations of intra-
class samples to lie close to their center. A multi-layer filter
is developed to discover the representative and robust attribute
specific bases. The attribute specific bases are only shared among
the positive samples or the negative samples. The experiments
on the challenging Animals with Attributes (AwA) dataset and
the SUN attribute dataset demonstrate the effectiveness of our
proposed method.

Index Terms—Attribute Learning, Dictionary Learning,
Dictionary Bases

I. INTRODUCTION

HERE exist numerous object categories in the real world.

In order to recognize the various objects and scenes,
many machine learning approaches have been proposed. Cur-
rent machine learning approaches heavily rely on the suffi-
ciency of training data. However, the labeled data are often
time-consuming and expensive to obtain. Besides, how to
effectively annotate images and videos is still an open problem.
In order to leverage the knowledge of annotated images to
classify novel objects, visual attributes were proposed [1].
Visual attributes are mid-level descriptors which bridge the
low-level features and high-level concepts. Various attributes
are proposed for different applications. For example, attributes
can be divided into binary attributes and relative attributes. The
value of a binary attribute is either one or zero, while the value
of a relative attribute is continuous. There are also semantic

W. Wang, Y. Yan and N. Sebe are with the Department of Information
Engineering and Computer Science, University of Trento, Italy. E-mail:
wangweil990@gmail.com, tom.yan.555@gmail.com, sebe @disi.unitn.it

S. Winkler is with the Advanced Digital Sciences Center, Singapore. E-
mail: Stefan.Winkler@adsc.com.sg

Manuscript received July 9, 2015; revised October 1, 2015 and November
21, 2015; accepted January 19, 2016. This work was supported in part
by the European Commission Project xLiMe, and the research grant for
the Human-Centered Cyber-physical Systems Programme at the Advanced
Digital Sciences Center from Singapores Agency for Science, Technology
and Research (A*STAR).

Attributes
) Suppress
Multilayer Intra-class
Filter »| Nosie
-.ka.-..é‘ Noise
,:/Bases
Attribute ]
Specific I Label
Bases : Constrained
| Dictionary
1 Learning
!
Class:
Rabbit
Fig. 1. Overview of the Framework. The label constrained dictionary

learning module forces the dictionary to focus on learning the shared attribute
specific bases by penalizing the intra-class variance. Then the mutilayer filter
helps discover the representative and robust bases for each attribute.

attributes and discriminative attributes. The semantic attributes
have semantic meanings assigned to them while discriminative
attributes do not have exact semantic meanings.

Attributes are used to describe the characteristics and quality
of an object or scene, such as materials, appearances, and
functions. Attributes can provide a more detailed description
of an image [2], [3] and can make key-word based image
search feasible (e.g., young asian men with glasses). Besides,
attributes are also composable, they can be combined for
different specificities, i.e., a consumer might want to find high-
heeled shiny shoes. The most important property of attributes,
such as color and shape, is that they can be transferred among
different object categories. Zero-shot learning [4] is proposed
based on this property. First, attribute classifiers are pre-
learned from their related objects. Then the target object can be
recognized based on its binary attribute representation, which
requires no training examples. The attribute representation
is a binary vector whose elements are either one or zero,
indicating the presence or absence of a specific attribute [5].
The binary attributes can efficiently split the image space [6].
k binary attributes can split images into 2* space. In addi-
tion, abnormality prediction can be achieved [7] by checking
the absence of typical attributes or the presence of atypical
attributes. However, the binary classifiers for attributes fail in
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capturing the relative strength of attributes between images.
In order to capture more generative semantic relationships,
relative attributes were introduced by Parikh and Grauman [8].
A ranking function is learned for each attribute whose output
is a continuous score denoting the strength of attributes in an
image. With the help of relative attributes, we can describe
images relative to other images by comparing their attribute
scores. A more recent study showed that the performance of
relative attribute ranking functions can be improved by using
local parts that are shared through categories instead of using
global features [9], [10].

In most situations, attributes are predefined with semantic
meanings. Attribute vocabulary can be manually designed,
such as the ‘Animal with Attributes’ dataset [11] where 85
binary attributes about 50 animal classes are defined. How-
ever, human defined attributes might be insufficient and not
discriminative, especially for the categories which are not well
studied by linguists. To tackle this problem, Parikh et al. [12]
proposed augmenting the vocabulary actively to ensure that the
new attributes can be inter-class discriminative. The rich web
data can also be utilized to mine attributes, which requires no
human annotators. Berg et al. [13] proposed mining attribute
vocabulary automatically from web images and noisy text
descriptions. They also demonstrated that some attributes can
be localized, i.e., attributes can be characterized into local
or global ones. As the localized attributes can provide fine-
grained information, they are more discriminative when the
object categories are quite close to each other (e.g. bird
species recognition). A local attribute discovery model was
introduced by Duan er al. [14] to determine a local attribute
vocabulary. In most situations, attributes are defined prior to
learning their corresponding statistical models. We can also
learn the models first, and then decide whether to assign
semantic meanings to the learned models. For example, some
discriminative attributes [5] without semantic meanings are
proposed for object recognition. Thus, attributes do not have
to be associated with semantic meanings.

Current attribute learning methods usually map the low-
level features directly to attributes. The dimension of low-level
feature vector is usually very high because of the concatenation
of various features, such as SIFT, Color SIFT and HOG.
Jayaraman et al. [15] pointed out that the performance of
attribute classifiers could be improved through feature se-
lection because of the intrinsic mappings between attributes
and features. Take color attributes (red, green, yellow, etc.)
for example, the color attributes can be better trained on
the dimensions corresponding to color histogram bins, wheres
texture attributes (furry, silky, etc.) prefer texture features.

Most works perform feature selection by adding differ-
ent regularizers into the loss function to encourage sparsity
selection of features, and the correlation between attributes
is considered simultaneously [5], [16], [15]. For instance,
ly-norm encourages feature competition among groups, lo-
norm encourages feature sharing among groups, and Is ;-
norm encourages intra-group feature sharing and inter-group
competition. Regardless of regularizer types, the underlying
intuition remains the same, i.e., encourage the semantically
close attributes to share similar feature dimensions. The se-

mantic correlation is either measured according to the semantic
distance mined from the web, e.g., using WordNet [17], or
from attributes’ co-occurrence probability as proposed by Han
et al. [16]. However, it is hard to judge to what extent the
visual appearance similarity can be reflected by semantic
closeness, and there is no guarantee that the semantically
close attributes are visually similar. For example, the semantic
distance between orange and apple is 2.25 and 0.69 between
orange and mandarin, which are calculated based on the
Leacock-Chodorow similarity measurement from WordNet
[17]. However, we could not say that orange is visually more
similar to apple than mandarin. In fact, orange should be
more visually similar to mandarin as they have the same
shape and color. Furthermore, the raw features might be very
noisy and feature selection [18] over the raw features discards
the structure information as each feature dimension is treated
independently.

To address this issue, we propose a novel framework which
consists of a label constrained dictionary learning module and
a multilayer filter to perform basis selection. Fig.1 shows the
overview of the introduced framework. Different from the
conventional methods which perform feature selection over
the raw features, we adopt a multilayer filter to do feature
selection at the dictionary level, as a dictionary is expected to
capture the higher-level structure of images [19]. First, a label
constrained dictionary is constructed by suppressing the intra-
class training data. Second, we design a multilayer filter to
perform basis selection for each attribute independently. The
basis is regarded as attribute specific basis if only the positive
or only the negative examples have large and stable distribution
over it. The larger the distribution is, the more representative
the basis is. The smaller the standard deviation is, the more
robust the basis is. Therefore, in the multilayer filter, two filters
are designed for attribute specific bases selection, namely,
p-Filter and o-Filter. The p-Filter selects the representative
bases, and the o-Filter select the robust bases from the repre-
sentative bases. Common bases are marked if both the positive
and negative examples have large distribution over them. The
common bases are only used for the reconstruction while the
attribute specific bases are used both for image reconstruction
and attribute classifier learning. Finally, the attributes of an
image are predicted by a set of linear SVM classifiers with
its projection over the attribute specific bases. To sum up, this
paper makes the following contributions:

o A novel label constrained dictionary learning method is
proposed which suppresses intra-class noise and encourages
the projections of intra-class training data to lie close by.

o A multilayer filter is designed for dictionary basis selection.
Two filters, namely p-Filter and o-Filter are designed to
select the robust and representative bases for each attribute.
This paper is organized as follows. Section 2 reviews related

work. Section 3 introduces our proposed framework. Experi-

ments are described in Section 4, while Section 5 concludes
this paper.

II. RELATED WORK

In this section, we review the related work on attribute
learning, feature selection and dictionary learning.
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Fig. 2. Pipeline Overview. (top) A label constrained dictionary is learned by encouraging intra-class samples lie close by. (bottom left) Multilayer filter:
p-Filter & o-Filter are designed to select a set of robust and representative attribute specific bases to reconstruct each attribute. (bottom right) Attributes are
predicted by linear SVM classifiers using the distributions over the attribute specific bases.

A. Attribute Learning

Attributes are middle level features which are shared
through categories. Human naturally describe visual concepts
with attributes. For instance, when we describe a person, we
might say that he is a male, has short hair, and wear jeans. We
also recognize objects or scenes through their attributes. For
example, zebra has stripes. Recent studies revealed that the
high performance of convolutional networks is ascribed to the
attribute centric nodes within the net [20], and weakly super-
vised convolutional neural networks works well for attribute
detection [10]. Besides, attributes usually provide more details
of an image. In some situations, people may be interested not
only in the object categories (e.g., cat, dog, bike), but also in
the detailed information (e.g., is silky, has legs, is cute) of an
image. In order to describe images with detailed information,
Farhadi et al. [21] proposed describing an image based on
semantic triples <object, action, scene>. The semantic triple
links an image to a descriptive sentence. However, the method
in [21] heavily relies on the object and scene classifiers to
generate triples. Han et al. [22] proposed a hierarchical tree-
structured semantic unit to describe an image at different
semantic levels (attribute level, category level, etc). Thus, even
if the object or scene classifier is unavailable, some attribute
level information could still be provided.

As attributes are shared through categories, they also have
great potential in object recognition tasks [23], [1], [24].
Latent attributes are utilized to improve the performance of

object classifiers by taking the object-attribute relationship into
consideration [25], [26]. Wang et al. [27] took a further step
to improve object classification performance by employing
the attribute-attribute relationship. Besides, attributes can help
recognize object when no training data is available. Lampert
et al. [4] proposed zero-shot learning to predict unseen objects
based on its binary attribute representation. Parikh er al. [8]
improved the performance of zero-shot learning by utilizing
relative attributes. Relative attributes can also be used to
benefit interactive image search [28]. Based on the relative
ranking scores, the system is enabled to adjust the strength
of attributes to meet users’ preferences. For active learning,
attributes can propagate the impact of annotations through the
entire model. Relative attributes can accelerate discriminative
learning with few examples [29], [30], [31] as the mistake
learned from one image can be transferred to many other
images. For example, when the learner considers an image
to be too open to be a forest, all other images more open
than the current one will be filtered out. Attributes are also
successfully applied into action recognition [32], [33], [34] and
event detection [35]. Since attributes have wide applications,
the performance of attribute classifiers are crucial.

B. Feature Selection for Attributes

There exist many different attribute groups, such as person-
related attributes (e.g., is male, has hat, has glasses), scene
attributes (e.g., trees, clouds, leaves) and animal attributes.
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In animal attributes group, there are also subgroups, such
as textures (e.g., stripes, furry, spots), part-of-body (horns,
claws, tusks) and colors (black, white, blue). Jayaraman et
al. [15] pointed out that the attribute classifiers would have
different performances when different types of features were
used because of the intrinsic relations between attributes and
feature types.

The conventional methods learn attribute classifiers by map-
ping all the low-level raw features directly to each semantic
attribute independently. However, many attributes are strongly
correlated through the object categories. For example, most
objects that have wheels are made of metal. Then when we try
to learn has wheel, we may accidentally learn made of metal.
To solve the correlation problem, various feature selection
techniques are developed, most of which are implemented by
integrating regularizers into the loss function. The underlying
intuition behind feature selection is that only a portion of
feature dimensions defines an attribute.

Thus, feature selection is an important process to improve
the performance of attribute classifiers. Many works imple-
ment feature selection directly on the low-level raw features
by using different regularizers, such as /;-norm combined with
la-norm, I 1-norm [15], [36], or I3 ,-norm, to encourage intra-
group feature sharing and inter-group feature competition, as
well as different loss functions, such as linear regression or
logistic regression. Most regularizers are employed to get rid
of the influence of attribute correlations. However, most cur-
rent works revealed that the performance of attribute classifiers
could be improved by harnessing attribute correlations rather
than removing it [37], [38]. Han et al. [16] measured the
attribute correlation through their co-occurrence probability
among the object categories. A symmetric connected graph
is constructed to represent the correlation between each pair
of attributes, and the weights of the edges denote the quan-
tified correlations. Then the correlation is put into /;-norm
regularizer. The relation between attributes does not have to
be symmetric. For instance, the presence of necktie strongly
indicates the presence of collar while the presence of collar
does not indicate the presence of necktie. An asymmetric
attribute correlation was defined in [39]. Usually, attribute
correlation is regarded as an indicator of the feature sharing
extent between attributes, and it is used to encourage feature
sharing while feature competition is neglected. Regardless of
the regularizer types, all these methods rely on regularizers to
perform feature selection.

C. Dictionary Learning

Dictionary learning (or sparse coding) has been originally
developed in order to explain the early visual processing in the
brain [40]. An over-complete dictionary is built by minimizing
the reconstruction error of the training samples where the
learned bases are edges. Thus a more succinct and compact
representation of an image can be obtained by its approximate
decomposition over the dictionary bases. Based on sparse
coding, hierarchical deep belief net model was proposed [41].
While learned bases in the first layer correspond to edges,
the learned bases in the second layer correspond to object

components which are the combinations of edges. When
multiple objects are used for training, the learned bases are
the features shared across object classes. With the help of
dictionary learning, the unlabeled data can be utilized to help
supervised learning tasks, as usually the labeled data is very
time-consuming to obtain. Dictionary learning allows us to use
a small labeled training set to do a much better job at training
classifiers [19].

More recently, dictionary learning has been applied to solve
event detection [42], [43] and action detection problems [44].
Actions in videos are often atomic and largely defined by body
poses, while events are composite and defined by objects and
scenes. Qiu et al. [45] proposed learning a compact dictionary
for actions, in which each basis is treated as an action attribute.
In addition, dictionary learning can also be applied to image
clustering tasks. Ramirez et al. [46] proposed learning multiple
dictionaries for multiple categories to better embed the class
information. The new data are assigned to the cluster whose
dictionary can minimize the reconstruction error. Many dif-
ferent dictionary learning variants are studied by researchers,
such as pairwise dictionary learning [47]. Another variant of
dictionary learning was considered in [48] by integrating the
manifold information and dictionary learning into the same
framework.

Some work tried to bridge attributes and dictionary learning.
Feng et al. [5] proposed an adaptive dictionary learning
method for object recognition. Each image is reconstructed by
a linear binary combination of dictionary bases, and each basis
is regarded as one attribute. However, these attributes have
no semantic meanings, and they can hardly be generalized
to novel categories. Besides, the dictionary is usually trained
by unlabeled data [46], [19] and a lot of noise bases that
come from other unrelated objects are also learned. When
labeled data are available, a label constrained dictionary can
be learned, which is expected to encourage the sparse rep-
resentation of intra-class data lie close by. In our work, this
is implemented by a special regularizer and a modified Fast
Iterative Soft-Thresholding Algorithm (FISTA) is adopted to
solve the problem.

III. LABEL CONSTRAINED DICTIONARY LEARNING AND
ATTRIBUTE SPECIFIC BASIS SELECTION

In this section, we further discuss the underlying motivation
of the proposed framework and present an overview of our
approach. Then, our label constrained dictionary learning
method is introduced. Finally, we elaborate the multilayer filter
for basis selection.

A. Motivation and Overview

Most works employ feature selection to improve the per-
formance of attribute classifiers. The underlying assumption
is that an attribute is defined by a certain amount of feature
dimensions. Thus, attributes are often learned jointly in a
multi-task learning framework [49], [50], [51], [52] in order
to encourage feature sharing among correlated attributes.

However, feature selection discards the structural infor-
mation of an image. Inspired by [5], we propose a label
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constrained dictionary learning method to decompose the
images and the structural information is expected to be better
preserved by dictionary bases. Then, we use the learned
dictionary to reconstruct attributes. The motivation of our
approach is that the objects containing the same attribute will
have similar projections over the attribute specific bases. To
help the dictionary focus on learning the shared attributes,
label information is incorporated into the dictionary learning
phase to minimize the intra-class noise. Qiu et al. [45] select a
subset of dictionary to reconstruct all the actions and a better
performance was yielded. Inspired by [45], we propose select-
ing attribute specific bases for attributes. Different from [45],
we do basis selection for each attribute, and we implement it
via a multilayer filter.

The proposed approach for training attribute classifiers is
illustrated in Fig. 2. First, a label constrained dictionary is
learned. This is implemented by penalizing the intra-class
variance. Then the attribute specific bases are selected. Two
types of attribute specific basis are considered: the basis that is
only shared among the positive examples, and the one that is
only shared among the negative examples. These two types of
basis are named as positive stimulus basis which reflects what
the attribute has and negative stimulus basis which reflects
what the attribute does not have.

B. Label Constrained Dictionary Learning

The classical dictionary learning model which is aimed
at minimizing reconstruction error and encouraging sparse
projection is defined as follows:

N
win||X — DCJF + A lleill
i=1

where the first term is in charge of minimizing the recon-
struction error and the second term controls the sparsity.
X € RM*N_Af is the dimension of training data, N is the
number of data, D € RM*L ig the dictionary, L is the number
of bases, C € REXY is the projection of training data, and c;
is the i-th column of C, I[;-norm is the lasso constraint which
encourages sparsity, and A balances the trade-off between the
reconstruction error and the sparsity.

Instead of learning multiple dictionaries, we learn one single
label constrained dictionary for all categories. Thus, the shared
attribute specific bases among the objects can be learned. To
encourage the projections of intra-class data to lie close by,
we propose the following optimization problem:

N K

%}gIIX—Dcn%w;HcinmzlHc<s>—c<s>Es||% )

The first two terms remain the same as the classical dic-
tionary learning. The third term helps decrease the intra-
class distribution variances. K is the number of categories.
ce) = [c{¥ ﬁ ..., c)] denotes the projections of data from
category s. C(s) is the mean of C(). Eg = [1,1,...]1xs,,
where s; is the number of data from category s. o balances the
reconstruction error against sparsity penalty while 5 denotes

the weight of intra-class variance penalty. The third term forces
all the intra-class data to lie close to the category center
which is defined as the mean of the projection. Thus, the
model will focus on learning the shared attributes among the
intra-class data and the noise, such as background information
will be suppressed. In addition, learning all the bases in the
same dictionary, instead of multiple dictionaries, allows us to
learn bases that are shared across different categories. Thus,
the attribute specific bases can be identified by mining the
shared bases across different categories containing that specific
attribute.

C. Optimization

The proposed optimization problem in Eqn.(1) is noncon-
vex. However, when one of the variables is fixed, the problem
becomes convex with respect to the other one. Thus, we solve
the problem by optimizing the objective by fixing one of
the variables alternatively until the loss function converges.
To learn the projection for each category, we decompose the
objective into sub-objectives, and we adopt a modified Fast
Iterative Soft-Thresholding Algorithm (FISTA) [53] algorithm
to solve the sub-objectives. FISTA algorithm was proposed to
solve the classical dictionary learning problem and it converges
very fast. A soft-threshold step is incorporated to guarantee the
sparseness of the solution. It converges in function values as
O(1/k?) [53], in which k denotes the iteration times, while
for the traditional ISTA method, the complexity is O(1/k).
The details are shown in Algorithm 1.

Algorithm 1 Solution Structure
. Initialization: D < Dg , C < Cyg
repeat
fix D, update C:
for C*) € C do
ratio < 1
while ratio > threshold do
run modified FISTA
update ratio
end while
end for
11:  fix C, update D
12: until converges

R AN A Rl

._
4

Initialization in Algorithm 1:

we employ k-means clustering to find k centroids as the initial
bases in dictionary Dg. Cj is set to 0.

The loop in Algorithm 1 consists of two parts:

(1) Fix C, Optimize D: By setting the derivative of Eqn.(1)
with respect to D equal to 0, we obtain,

(DC - X)CT =0= D =Xc’(cch)™!

In case CC” is singular, we use the following equation to
update D.
D = XcT(cc” + 1!

A is a small constant to guarantee that the matrix CC” + \I
is invertible when CC” is singular.
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(2) Fix D, Optimize C: To update C, we decompose the
objective into a set of sub-objectives. Each sub-objective
corresponds to one category.

Note that when D is fixed, L(D; C(*); X(*)) is independent
from each other with respect to s. Then the objective Eqn.(1)
can be written as:

K

min L(D; C*); X(*))

K
- o). X)) _
mén;L(D,C ;X)) min

= s=1

Thus the original objective function is decomposed into a
set of sub-objective functions with respect to each category.
The third term in Eqn.(1) makes the c; and c; within the
same category become dependent on each other. Thus, c; and
c; must be updated simultaneously in order to make the whole
system converge. We modify the FISTA algorithm to tackle the
problem. The new sub-objective in our model is as follows,

1
P= 3" IDe=x|*+alel +8le -+ > e’

ceC(®) creC ()

From the equation above, we can find that, for training data
x € X its distribution ¢ (c € C®) depends on other cy
(ck € C®)). Thus, the sub-objectives cannot be optimized
independently. We modify the FISTA algorithm to optimize
the sub-objectives from the same group simultaneously. The
sub-objectives are grouped together if the training data belong
to the same group. Then when updating C(*), all c; € c®)
are updated simultaneously for j =1, ..., s;.
oF

’y(()\'Cj
Please refer to [53] for the details about how to select the ap-
propriate ~, as well as the following soft thresholding process
to delete the small values in c;. This updating procedure of
C®) continues until convergence. To judge whether all the c;
in the same category converge or not, we refer to the metric
ratio, which is defined as:

Cj ‘=G5

ratio= min |lc; — & l/%/]/c|?
min ey =31/

in which ¢; denotes the updated value of cj. The thresh-
old controls the number of iterations of each category. If
ratio < threshold, the update procedure for the category will
be terminated. We run the same procedure for each category.
In Algorithm 1, line 4 to line 10 represent the pseudo-code to
update C. The setting of the values is available at the end of
section 4.3.2. The convergence condition required in step 12
of the algorithm is similar to the ratio defined in the FISTA
algorithm.

D. Multilayer Filter - Basis Selection

After learning the label constrained dictionary, we rely on
the statistics of the projection C to divide the bases into 3
groups, the common bases, attribute specific bases, and
noise bases. Common Bases are the bases over which both
the positive and negative examples have large and stable
distributions. Attribute Specific Bases are the bases over which
only the positive or only the negative samples have large and
stable distributions. Noise Bases are the remained ones.

Two metrics, the mean p and the standard deviation o,
are used to characterize the distribution of samples. Thus, we
design a two-layer filter for basis selection which consists of
p-Filter and o-Filter.

Let ¢;; denote the distribution of j-th sample over i-th
basis. Then the mean of positive samples over the ¢-th basis
is py ﬁzjeP ¢;;. P is the set of positive samples
and | P | is the cardinality of the set. Similarly, we have
i = ﬁ >_jen Ci,j for the negative set N. The basis selection
criterion is illustrated in Fig.3. pup, iy, op and oy are
threshold values that control the ratio of selected bases. The
first layer filter, p-Filter, filters out part of the noise bases and
all the common bases and only the candidates for attribute
specific bases are left. The second layer o-Filter further filters
out the unstable bases. Thus, only the stable candidates are
selected as attribute specific bases.

1 1

| m<pe E Wi 2 pp _ 0i <OP i 0i 2 0p

ai N —

Bl > B 7 > On i 7> W
Region 4 i [ Region 4 i .
Attribute | Region 1 9 ! Region 1

Specific Bases common Attribute Noise
i Specific Bases |

— | Candidates ! Bases P i

BN | . N ON |mmmmmmmmmmm oo
Region3 |  hegion2: Region3 |  Region2

Noise | _ Aftribute Attribute | Attribute
1 Specific Bases Specific Bases 1 - Specific Bases
i Candidates '
pi < fip i Wi > pp 0; < ap { 0; > op
B <pN < Gi<on | Oi<0n
I |
u;D Hi U;J a;
Fig. 3. p-Filter & o-Filter design for basis selection. p-Filter selects

discriminative bases and o-Filter selects robust bases.

p-Filter The candidates of positive stimulus bases are the
ones which are located in region 2 in the u-Filter section
of Fig.3 over which only the positive samples have large
mean distribution. The candidates of negative stimulus are
located in region 4 over which only the negative samples
have large mean distribution. The common bases are located
in region 1, and the noise bases are located in region 3. The
candidates of attribute specific bases will be further processed
by the second layer filter, o-Filter, in where only the robust
candidates can pass and be selected as attribute specific bases.

o-Filter is the second layer filter. Given a candidate of
positive stimulus basis, it will be selected as a positive
stimulus only if the standard deviation of positive examples
over the basis is small while there is no requirement for the
negative samples. The positive stimulus bases are located
in region 4 & region 3 in the o-Filter section of Fig.3.
The robust negative stimulus bases are selected in a similar
manner. The negative stimulus bases located in region 2 &
region 3. The unstable candidates are classified as noise
bases.

E. Attribute Classifier & Evaluation Metric

After obtaining the attribute specific bases, we adopt linear
SVM as attribute classifier. The training data for the classifiers
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Fig. 4. Images from the Animal with Attributes dataset (left), and Images from the SUN attribute dataset (right). It is worth noticing that the attributes in
the AwWA dataset are class-wise, and there are no intra-class attribute variance. The attributes in the SUN attribute dataset are class-agnostic, and there exists

intra-class attribute variance.
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Fig. 5. (left) Binary animal-attribute matrix from the AwA dataset: 15x30 extracted from the complete 50x80 matrix. (right) Binary scene-attribute matrix
from the SUN attribute dataset: 15x30 extracted from the complete 102x717 matrix.

are the sparse representations of samples over the attribute
specific bases. To detect attributes for a new image, the image
is first decomposed by the dictionary to get a more compact
representation. Then its distribution over the attribute specific
bases will be used to perform attribute detection.

The testing data are very biased, and we use F} score to
evaluate the performance of our method. F} is the harmonic
mean of precision and recall:

Fl=2 precision - recall

precision + recall

After obtaining the F) scores of multiple attributes, the
mean F score is adopted as the evaluation metric.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
our proposed method.

A. Datasets

We evaluate our proposed framework with three datasets.
The ‘Animal with Attributes’ (AwA) dataset introduced by
Lampert et al. [11], ‘SUN Attribute Database’ introduced by
Patterson and Hays in [54], and Outdoor Scene Recognition
(OSR) dataset. Fig. 4 shows examples from the AwA dataset
and SUN dataset. The AwA dataset contains 50 animal cat-
egories, which are separated into 2 parts: 40 seen animal
categories and 10 unseen animal categories. 85 semantic
attributes are defined in the dataset, which are grouped into 9
groups (color, texture, shape, etc.). The attributes are mapped
to the categories according to the attribute-category matrix.
The features are provided along with the dataset which include
SIFT, Color SIFT, Pyramid HOG and Decaf features which are
generated at the fully connected layer (fc7) from CaffeNet.

The Sun attribute database is a large-scale scene database
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(LC_DL) and Label Constrained Dictionary Learning combined with basis selection (BS+LC_DL) on the AwA dataset with GIST feature and the SUN
attribute dataset with decaf feature.

which includes 102 discriminative continuous attributes which
describes scenes’ materials, surface properties, lighting, func-
tions, affordances, and spatial layout properties. It consists
of 14340 images from 717 classes (20 images per class on
average). The authors of [54] also provide image features
which are GIST, HOG, self-similarity, and Geometric color
histograms. For our experiment, we rely on these features.
Different from the binary class-wise category-attribute ma-
trix in the AwA dataset, the attribute presence probability
in the scene-attribute matrix is continuous. Each images is
labeled by 3 annotators. The image-attribute element is set to
1 if the annotator believes that such attribute is present in the
image. Otherwise it is set to 0. Finally, the value of the image-
attribute matrix is set by taking the average of the presence
scores from 3 annotators. In order to convert the continuous
value of the probability into a binary one, we set the value in
the image-attribute matrix to 1 if two or more annotators vote
for the presence of an attribute in an image and set it to O if
it receives 0 vote for its presence. If there is only one vote
for the presence of an attribute in an image, the image will
be neglected for this attribute, as this implies that the image
is in a transitional state between the two states (presence and
absence). In the AwA dataset, each attribute has at least one
class of positive training samples. But the attributes in the SUN
attribute dataset are category agnostic, and intra-class attribute
differences are allowed. Thus the training samples for some
attributes in the SUN attribute dataset can be extremely biased.

B. Experimental Settings

1) Data Split for Training and Testing: For the AwA
dataset, the label constrained dictionary is trained with the data
from the 40 seen categories. The parameters of the multilayer
filter and the linear SVM classifier of the binary attributes
are learned jointly based on the seen categories. 5-fold cross
validation is implemented to select the optimal classification
parameters. The remaining 10 unseen categories are used to
evaluate the generalization properties of the attribute specific
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bases. We use all the samples in the seen categories for
training and all the samples in the unseen categories for testing.
During the classification training phase, the weights of the
miss-labeling penalty for the negative and positive data are
set inversely proportional to the size of negative and positive
data to make up for the bias of training data.

For the SUN attribute dataset, the seen and unseen cate-
gories are not predefined. We randomly select 358 categories
as seen categories, and 359 categories as unseen categories.
The label constrained dictionary and basis selections filters
are designed and calibrated based on the seen categories. The
training data in the SUN attribute dataset are more biased than
the data in the AwA dataset. To prevent attribute detection
from being influenced by attribute popularity, we fix the ratio
of positive and negative samples both for training and testing.
Each classifier is trained on 300 images and test on 100
images. The attributes whose positive samples are less than
200 are excluded. Thus, 87 attributes in the SUN attribute
attribute dataset are selected to evaluate our methods.

2) Parameter Settings: In the label constrained dictionary
learning phase, o and 3 are tuned from [1073, 1072, ..,
103]. Dictionary size varies within the range of [0.5, 1, 1.5,...,
3]x102. For the multilayer filter, the threshold values up, iy,
op, on are tuned from [10%, 20%, ..., 100%]. In the attribute
classifier training phase, the penalty parameter C' in the SVM
classifier is tuned from [1073, 1072, ..., 10°].

C. Results

1) Evaluation of Label Constrained Dictionary Learning
and Basis Selection: To evaluate the performance of our intro-
duced method, we compare our method with label constrained
dictionary learning without basis selection, the classical dic-
tionary learning, as well as the raw feature. Linear SVM
classifiers are employed, and the mean F1-score is employed
as the evaluation metric.

Fig.6 (left) shows the mean Fl-score in the AwA dataset.
In Fig.6 (left), deep feature is employed as the raw feature.
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Similarly, Fig.6 (right) shows the mean F1-score in the SUN
attribute dataset where the GIST [55] feature is employed.

From Fig.6 we can observe that our method outperforms
all the baselines for both datasets. The classical dictionary
learning has similar performance with the raw feature. The
label constrained dictionary learning outperforms both the raw
feature and classical dictionary learning method. For the AwA
dataset, the label constrained dictionary learning outperforms
the raw feature by 3.5%. However, for the SUN attribute
dataset, the improvement is very small (0.9%). There is no
surprise that the label constrained dictionary learning has a
more remarkable effect on the AwA dataset compared with
the SUN attribute dataset. This is because the attributes in
the AwWA dataset are class-wise. Then, there is no intra-class
attribute variance. However, for the SUN attribute dataset,
the attribute is class agnostic. Then, there exists a certain
amount of intra-class attribute variance. Our label constrained
dictionary learning is aimed at suppressing the intra-class
noise. Consequently, the performance of the label constrained
dictionary learning is restricted by the intra-class attribute
variance. The reason why the label constrained dictionary
learning still outperforms the raw feature in the SUN attribute
dataset is that most images within the same class still share the
same attributes. Thus, the label constrained dictionary learning
can still help focus on learning those attributes which are
shared through the whole class.

We can also observe that basis selection further improves
the performance of label constrained dictionary learning by
7.89% on the AwA dataset, and 4.4% on the SUN dataset.

2) Multilayer Filter Parameter Settings and Convergence
Study: We employ the AwA dataset to study the sensitivity of
the multilayer filter parameters. Fig.7 shows the grid plot of
the mean F} score with respect to different filter parameters.
The dictionary size is set to be 2000. The p-Filter and o-Filter
control the ratio of selected bases. The ratio of the selected
bases ranges from 10% to 100%. The performance is measured
on the unseen object categories. The value of the bar is the
mean F7j score of all the 85 attributes. From Fig.7, we observe
that when more bases are selected either by the p-Filter or
by the o-Filter, the mean Fj score tends to decrease. The
maximum Fj score is obtained when both the p-Filter and the
o-Filter only select 10% bases. From this observation, we can
conclude that, the basis selection improves the performance of
attribute detectors, and the best ratio of the basis selection lies
close to 10% which could be mined out by doing a fine-grained
search of the ratio. The optimal filter parameter settings for
the SUN attribute dataset are configured in the same way. As
the training samples in the SUN attribute dataset is relatively
small compared with that in the AwA dataset, its dictionary
size is set to be 500.

Fig.8 illustrates the first layer filter, namely, the u-Filter.
The two decision boundaries control the ratio of the selected
candidates of the attribute specific bases before putting them
into o-Filter. The decision boundaries in the pu-Filter are
determined by two threshold values, i p, fiy which correspond
to the mean of the distribution of the positive samples,
and to the mean of the distribution of the negative samples
respectively. The two boundaries divide the bases into four
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regions. However, only the bases in the upper-left region and
the lower-right region are selected as representative bases. The
bases in the upper-left region represent what the attribute does
not have. The bases in the lower-right region represent what
the attribute has. The bases in lower-left region are regarded
as noise as both positive and negative samples have small
distributions over them. By setting the boundaries to different
values, different amount of bases can be selected.

For p filter, we sort the bases in ascending order with respect
to p and ji separately. Then we select the desired amount of
percentage (10%, 20%, etc) with respect to p and i separately.
The attribute specific bases are then selected from these bases
by removing their overlap (noisy bases).

Fig.9 is the scatter plot of basis selection with the o-Filter.
After the selection of representative bases, the o-Filter is ap-
plied to discover the candidates which are robust enough to be
attribute specific bases. The decision boundaries in the o-Filter
are determined by two threshold values, op and o which
correspond to the standard deviation of positive samples, and
the standard deviation of negative samples respectively. If
either the positive samples or the negative samples have large
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mean and small standard deviations over the representative
bases, the bases will be selected as attribute specific bases.
Otherwise, they will be filtered out. Thus, the robust and
representative attribute specific bases are obtained.

We also study the convergence of our algorithm with the
AwA dataset. We rely on K-means to select K most repre-
sentative basis to initialize the dictionary. Fig.10 (a) shows
the convergence curve of the overall function. The threshold
controls the number of iterations of the algorithm for each
category. We set the threshold to 0.01. Fig.10 (b) shows the
log plot of the loss when updating C(®) for five categories. It
shows that all the five sub-objectives converge very fast. The
threshold could be adjusted to a smaller number if we expect
the algorithm to have more iterations.
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Fig. 10. (a) Convergence curve of the overall function. (b) Convergence curve
of sub-objective function for each animal category c),

3) Comparison with Baselines: After performing basis se-
lection for the 85 attributes with the multilayer filter, the next
step is to make use of the attribute specific bases to train

the classifiers and we test these classifiers with the unseen
categories. We divide the baselines into two groups, namely,
the non-dictionary learning group and dictionary learning
group. For the non-dictionary learning group, we use the
following baselines:

e 1) The lib-svm classifiers combined with raw features.

e 2) The inter-group feature competition and intra-group
feature sharing multi-task learning framework with I5 ;-
norm regularizer [15], which is referred to as Attr-Attr
Relationship in the tables.

For the dictionary learning group:

¢ 1) Classical dictionary learning (DL) method.

e 2) Label constrained dictionary learning without basis se-
lection (LC_DL).

¢ 3) The label constrained dictionary learning which performs
feature selection randomly (RBS+LC_DL).

o 4) Other dictionary learning frameworks which integrate the
dictionary learning process and classifier training process,
such as supervised dictionary learning [56], label consistent
dictionary learning [57], as well as discriminative dictionary
learning [58].

Fig.11 illustrates the performance of different approaches
for some attributes in the AwA dataset. It shows the F} score
for each attribute using decaf feature. From Fig.11, we can
observe that for most attributes, our method outperforms the
other baselines. In general, our method outperforms other
baselines in 64 out of 85 attributes. When different features are
employed, the performance may vary a bit. Our method has
inferior performance over some attributes, such as “newworld”
and “oldworld” in Fig.12. This is probably because these
abstract attributes rely on the global features while our basis
selection strategy harms the global information. This problem
might be solved by integrating global features as an extra
channel with the selected basis. In the future, we will explore
how to integrate the global features into the attribute specific
basis.

Table I shows the performance of different approaches with
different features on the attributes from the AwA dataset. Two
metrics are employed to measure the performance, namely,
the average F score of the 85 attributes, as well as the mean
precision. We can see from Table I that the performance of
our method outperforms other baselines.

To show the effectiveness of our method, we also use the
SUN attribute dataset to evaluate our method. Fig.12 shows
the performance of different approaches for some attributes in
the SUN attribute dataset and Table II shows the performance
of different approaches with different features. Similarly, our
method still outperforms other baselines on this dataset. How-
ever, the performance improvement is less significant when
compared with the AwA dataset. This is because the attributes
in the SUN attribute dataset are class-agnostic and there exists
intra-class attribute variance. Thus, the intra-class attribute
variance weakens the performance of the label constrained
dictionary learning which is aimed at minimizing the intra-
class variance.

For the test data without labels, we follow the settings in
[57]. The novel regularizer will be neglected. Thus, the model
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TABLE I
AWA DATASET: PERFORMANCE COMPARISON WITH BASELINES BASED ON DIFFERENT FEATURES
Features
Methods SIFT Color-SIFT Pyramid-HOG DeCaf
Fy score | Precision | Fj score | Precision | Fj score | Precision | F) score | Precision
Non-Dictionary Lib SVM + Raw Feature 0.4034 0.4145 0.3739 0.3976 0.4264 0.4083 0.4039 0.4373
Methods Attr-Attr Relationship [15] 0.4107 0.4097 0.4167 0.4112 0.4166 0.3860 0.4432 0.4386
DL [19] 0.4024 0.4185 0.3909 0.3805 0.4289 0.4128 0.4133 0.4364
LC_DL 0.4011 0.4165 0.3981 0.4064 0.4270 0.4193 0.4163 0.4346
Dictionary RBS+LC_DL 0.4122 0.4140 0.4070 0.4071 0.4273 0.4233 0.4159 0.4179
Methods Jiang [57] 0.4103 0.4036 0.3898 0.3993 0.4134 0.4130 0.4039 0.4266
Zhang [58] 0.4088 0.4001 0.3788 0.3834 0.4099 0.4038 0.4003 0.4197
Mairal [56] 0.4174 0.4346 0.4006 0.4247 0.4396 0.4213 0.4219 0.4455
Our method 0.4789 0.4493 0.4465 0.4348 0.4815 0.4328 0.4752 0.4568
TABLE II
SUN ATTRIBUTE DATASET: PERFORMANCE COMPARISON WITH BASELINEIS: BASED ON DIFFERENT FEATURES
eatures
Methods GIST HOG Self-Similarity Geometric Color Hist
Fy score | Precision | F%y score | Precision | F% score | Precision | Fj score | Precision
Non-Dictionary Lib SVM + Raw Feature 0.7049 0.6984 0.7162 0.7069 0.7091 0.7044 0.6865 0.6671
Methods Attr-Attr Relationship [15] 0.5887 0.5321 0.5354 0.6431 0.5686 0.5633 0.5897 0.6182
DL [19] 0.6575 0.6791 0.6906 0.6363 0.6488 0.6885 0.6743 0.6606
LC_DL 0.7049 0.6984 0.7162 0.7069 0.7091 0.7044 0.6865 0.6671
RBS+LC_DL 0.6958 0.6868 0.7072 0.7006 0.7052 0.6914 0.6946 0.6827
Dictionary Jiang [57] 0.6944 0.6865 0.7043 0.6923 0.6946 0.6994 0.6683 0.6527
Methods Zhang [58] 0.6896 0.6875 0.6987 0.6887 0.6839 0.6823 0.6645 0.6498
Patterson [54] 0.7163 0.7038 0.7199 0.7085 0.7104 0.7064 0.6913 0.6752
Mairal [56] 0.7241 0.7177 0.7194 0.7263 0.7282 0.7141 0.7025 0.6699
Our method 0.7488 0.7454 0.7916 0.7644 0.7657 0.7493 0.7349 0.7298
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Fig. 13. Attribute Detection for SUN attribute dataset. For each query image, 7 most confidently recognized attributes (green and black) and 7 least confidently
recognized attributes (red) are listed. The black ones are the attributes which only receive 1 vote from 3 annotators and the green ones receive at least 2 votes

from 3 annotators.

becomes a standard dictionary learning model. We show our
qualitative results of our attribute classifiers in Fig.13. Most of
the attributes which have high confidences received at least 2
votes from 3 annotators, and a small portion of the attributes
receives 1 vote. The attributes with low confidences are indeed
absent in the image. For the forth image in Fig.13, there is
a false positive attribute grass. This is because this image
is visually similar to the grass as it has dirt and visually
green. It is very interesting that some function attributes can
be recognized with very high confidences even though these
functions are very abstract and hard to define visually. For
example, socializing, conducting business in the third image
are detected successfully.

V. CONCLUSIONS

In this paper, we propose a label constrained dictionary
learning method to improve the performance of attribute
detectors. First, we learn a label constrained dictionary which
encourages the sparse representations of intra-class data lie
close by and suppresses the intra-class noise. Then, we design
a multilayer filter, the p-Filter and o-Filter, to mine out a set
of robust and representative attribute specific bases for each
attribute. We test our method on both the AwA dataset and
the SUN attribute dataset, the extensive experimental results
demonstrate effectiveness of our proposed method, and it
outperforms other important baselines on average. In recent
years, convolutional neural network (CNN) is widely used
in many tasks, and Zeiler et. al pointed out that the third
convolutional layer in the Alex Net corresponds to attributes
[59]. Thus, the convolutional neural network (CNN) may also
benefit attribute detection task.

Overall, the proposed label constrained dictionary learning
is novel for attribute detection. Most attributes considered in
both the AwA dataset and the SUN attribute dataset are global

attributes (function attributes) while some may be localized
(material attributes in the SUN dataset, texture attributes in
the AwA dataset). Thus, attribute localization techniques might
help improve the performance of those attributes who have
spatial support. Besides, the attributes are learned indepen-
dently without considering the attribute correlations. But in
reality, some attributes are closely correlated (smoke and fire
in the SUN dataset, swim and water in AwA dataset). Thus,
the multi-attribute classification method which considers the
attribute correlation may improve the performance by learning
the attribute classifiers jointly. In the future, we would further
explore attribute correlations to improve attribute detection
accuracy.
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