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Abstract—We present HelipadCat, a dataset of aerial images
of helipads, together with a method to identify and locate such
helipads from the air. Based on the FAA’s database of US airports,
we create the first dataset of helipads, including a classification
by visual helipad shape and features, which we make available
to the research community. The dataset includes nearly 6,000
images with 12 different categories.

We then train several Mask-RCNN models based on ResNet101
using our dataset. Image augmentation is applied according to
learned augmentation policies. We characterize the performance
of the models on HelipadCat and pick the best-performing config-
uration. We further evaluate that model on the metropolitan area
of Manila and show that it is able to detect helipads successfully,
with their exact geographical coordinates, in another country.
To reduce false positives, the bounding boxes are filtered by
confidence score, size, and the presence of shadows. Dataset and
code are available for download.

I. INTRODUCTION

Urban Air Mobility (UAM) is expected to be integrated into
the airspace and expand quickly as an alternative to cars,
bus or subway for inner-city or intercity commutes as well as
for logistics services and deliveries. The increasing demand
for these services, combined with the spread of helicopters,
Unmanned Aerial Vehicles (UAVs) and autonomous drones
entices the industry to make these services affordable to more
people. For example, Uber has been offering trips from JFK
airport to Lower Manhattan in private helicopters since July
2019. Also, startups partner with helicopter operators to offer
ride-sharing platforms proposing time-saving trips by air in
high-traffic areas, like Ascent Flights in the Philippines. Such
co-operations allow cheaper flights and better use of available
helicopters. In addition, several companies are developing their
own eVTOL (electrical Vertical Take Off and Landing) aircraft
for short-distance urban travel as the transition to electric
motors reduces the cost of vertical flights [3].

No global helipad database is available at the moment,
except in the United States. The Federal Aviation Adminis-
tration (FAA) lists the country’s helipad coordinates, but it is
incomplete and out-of-date, as it relies on information supplied
by the heliport facility owners. Automatically cataloging all
heliports in a country could help overcome these issues and
lead to a more complete database, for use by helicopter
operators, transportation companies, and researchers.

II. RELATED WORK

The helipad detection problem was first addressed in [4],
where a detection algorithm is designed using normalized
wavelet descriptors for one specific pattern of helipad.
proposes a real-time detection method, with the purpose of
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allowing a UAV to land properly, by recognizing the in-
ternational standard helipad pattern. Feature matching with
Speeded-up Robust Features (SURF) [6] is used in [7] to detect
one particular template of helipad in images. These algorithms
are invariant to rotation and scale change, but are limited to
one specific pattern. Besides, they are primarily designed to
be used directly from a helicopter or an UAV for an imminent
landing. They are also not database-driven.

applies Deep Learning to the problem, by training a
CNN model based on ResNet50 [E[], with Transfer Learning
on the final layer, using a sliding window approach to ob-
ject detection. Because this approach generates many false
positives or recognizes the same helipad more than once,
DBSCAN clustering algorithm is applied to filter the
results. The number of false positives is still too high to
scale the detection to entire cities. Our contribution tackles
the issue by building an accurate dataset with ground truth and
categorizing the different patterns of helipads found. Based on
ResNet101 and trained on more layers, we aim to improve the
model’s precision. We further reduce false positive detections
by applying shadow detection, since helipads are flat and free
of shadows, and by filtering bounding boxes with ground areas
too small or too large to fit a helipad. We make the HelipadCat
dataset and code available for download/[l]

ITII. HELIPADCAT DATASET

No explicit dataset of helipad images is available. In the
United States, the FAA publishes a database containing the co-
ordinates of the country’s airports and helipads [I1]. Based on
this information, we retrieve the corresponding aerial images
using the Google Maps API with the respective helipad
coordinates, which returns an image tile with a resolution of
640 x 640 pixels.
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Fig. 1: Examples of helipad images in the database.

Out of the 5,878 images retrieved, only 3,264 (55.5%) have
one or more helipads inside, for a total of 3,463 helipads.
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Besides, the size of the helipads varies significantly, and
about half are not centered in the image, meaning that their
registered coordinates are not precise. Although this database
is not perfect, it is relatively balanced between true and false
samples. Figure [I] shows sample images from the dataset.

Ground truth for each image is created manually, using a
custom-made interface. We annotate the images by drawing a
bounding box around the helipad when there is one. Moreover,
a category is assigned to each pattern of helipads found, for
a total of 12 distinct categories. Figure 2] shows examples of
the pattern of each group. Note that the categories’ sizes are
unbalanced, and the number of possible patterns is quite high.
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(9) Count: 207 (Others) Count: 64 (Unknown) Count: 29

Fig. 2: Helipad categories with their respective sample counts.

74% of the dataset (2,418 helipads) are used for training,
while the remaining 26% (846 helipads) are set aside for
testing.

In order to make HelipadCat easily shareable, we put all the
metadata inside a separate file for each imageEl This JSON
file contains the helipad coordinates, the image zoom level,
the index inside the FAA database, the Google Maps URL
to re-download it, and the ground truth annotation (including
category and bounding boxes).

2 Available at https:/github.com/jonasbtn/helipad_detection

IV. DATASET AUGMENTATION

With relatively few examples of helipads, image augmen-
tation is necessary. A team at Google recently conducted an
experiment of learning the optimal augmentation policy for
object detection using reinforcement learning [13]]. They found
that learned augmentation is beneficial for small datasets and
small objects, which fits exactly our case. We use their latest
policy to generate augmented images from our training set. It
includes many sub-policies applied sequentially on the image
with a certain probability (Posterize, Sharpness, Equalize,
Autocontrast, Solarize and Brightness).

We establish the following augmentation strategies:

« Strategy 1: Generate one augmented image per example
in the training set.

o Strategy 2: Balance the number of augmented images
per categories by augmenting them a number of times
to match the size of the largest category.

o Strategy 3: Duplicate each category with augmentation
a specific number of times to reduce false positive and
false negative.

Since each sub-policy is applied with a probability, we end
up having different augmentations for the same example. The
number of augmented images generated by each strategy is
listed in Table [l

TABLE I: Categories’ size after applying augmentation strate-
gies. The training set is composed of the original dataset and
the images generated by one augmentation strategy.

Category  Original S1 S2 S3
0 40 40 1,161 80
1 1,161 1,161 1,161 2,322
2 309 309 1,161 618
3 118 118 1,161 708
4 165 165 1,161 165
5 98 98 1,161 294
6 85 85 1,161 340
7 68 68 1,161 272
8 115 115 1,161 575
9 172 172 1,161 860
Others 58 58 1,161 58
Unknown 29 29 1,161 58
Total 2418 2418 13,932 6,466
V. MODEL

We train a Mask R-CNN with a ResNet101 backbone to
generate the bounding boxes for each instance of an object in
an image. This neural network is composed of 101 layers with
skip-connections. The trained model size is 250MB. In order
to speed up the training, we initiate the model with the pre-
trained weights of MS COCO [135]]. We use the API developed
in [[I6], combined with our code, to load our dataset, train the
model, and predict the helipads. The API allows us to choose
which layer to train, and to freeze the weights of the others.
Starting by training only the head layers, we gradually increase
the number of layers to train. The training configurations and
parameters of our different models are given in Table [T} Note
that more layers slow down the training. The smooth-L1 loss,
the objective, converges, as shown in Figure E
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Fig. 3: Smooth-L1 loss curve of model D.

The output of the model is a bounding box together with a
confidence score. Detected bounding boxes can be filtered us-
ing rule-based strategies, developed and fine-tuned according
to the observations made from our results:

1) If one bounding box is contained inside another, only
the one with the highest score is kept.

2) If two bounding boxes overlap by more than 50%, only
the one with the highest score is kept.

3) A bounding box is kept if its score is above a certain
threshold.

VI. RESULTS

During training, the current weights are saved after each
epoch. After training, choosing the right epoch is essential to
prevent under- and overfitting. We keep the weights from the
epoch where both the training and validation loss are minimal.
Then, we evaluate the model for both the training and test
set using Mean Average Precision (mAP), computed using
the API of [16]]. Different models are trained with distinct
configurations. The results are shown in Table

TABLE II: Training parameters and results.

Model A B C D E F
Layers heads heads heads 5+ 3+ 3+
Aug S1 S2 S3 S2 S2 S2

Best Epoch 88 209 228 381 288 257
Loss 0.43 0.29 035 0.08 0.05 0.04

Val Loss 0.41 0.33 037 027 0.17 0.76
Train mAP 0.91 0.92 093 097 096 0.95
Test mAP 0.92 0.92 093 093 0.87 0.88

We also evaluate Accuracy, Error, Precision and Recall
for different score thresholds. Figure [] shows the receiver
operating characteristic (ROC) curves of each model, which
help us visualize the performance of each model. The AUC
is defined as the area below the ROC curve. The closer the
AUC is to 1, the better the model’s ability to detect a helipad.
Models A-C, with only the head layers trained, perform
similarly, even though the augmentation strategies and training
configurations are different. Models D—F, where layers from
stage 5 and above are included in the training, perform better.
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Fig. 4: ROC curves for the test set (view in color).

All evaluation metrics are listed in Table Even though
model D achieves a higher True Positive rate compared to
model E, without score filtering (98% vs. 90%), its False
Positive Rate is high (36% vs. 7.5%). Since we want to
minimize false positives for our given application (avoiding
to land on a site without helipad), model E appears to be the
best model (after filtering all the bounding boxes with score
below 0.95).

TABLE III: Evaluation metrics on the test set.

Model D E E F

Score Filtering 0 0 095 09
True Positive Rate  0.98 090 0.87 0.89
False Positive Rate 0.36  0.075 0.04 0.04
Accuracy  0.80 091 091 092

Error  0.19 0.08 0.09 0.07

Precision  0.72 092 096 0.96

Recall 0.98 090 0.87 0.89

We compare our method with the another CNN-based
approach [8]. Although the test areas are different, it can serve
as a rough baseline. [8] achieves a precision of 67.2% and a
recall of 90.0% on its test set, while our model F reach a
precision 96% and a recall of 89.0% with score filtering. This
large improvement in precision may be the result of the method
enhancement. Indeed, we upgraded the dataset by adding
pattern categorization and image augmentation. Furthermore,
our model was trained on all layers of Resnet101, whereas [8]]
trained its model with transfer learning on the final layer of
Resnet50.

VII. HELIPAD DISCOVERY

Our goal is to build a global helipad database with precise
geographical coordinates for flight planning. We would like to
find helipads in unknown territory for mapping purposes.

To explore the model behavior at scale, additional unseen
data are gathered using satellite images from the greater
Manila region. The city is known for being home to a high
helicopter activity and thus numerous helipads. However, we
expect significant differences between the training dataset
(consisting of US helipads) and the new data from a different



country. For our scenario, we download the entire city from
Google Maps at a zoom level of 19. This results in a new
(unlabeled) dataset of 263,496 images, each of dimension
256x256.

A. Model/Training Improvements

After running the predictions with model E, we manually
check all the helipad detections. We notice a substantial
number of false positives. Indeed, regular shapes like squares
and circles are detected as helipads, especially the roofs of
houses and buildings, sometimes with a very high confidence
score. We suspect that categories 4 and 7 may be causing this
problem. Therefore, we train model F without the images from
those categories, coupled with augmentation strategy 2. This
produces better results thanks to the larger dataset size and
reduced exposure to examples resembling false positive. The
results of both models are included in Tables [l and [Tl

According to our results, removing categories 4 and 7 has
a positive impact on the benchmark. Indeed, after applying
the filters using the same score threshold, the accuracy and
recall have increased by 1% and 2% respectively, and the error
reduced by 2%. While the false positive rate stays the same,
the true positive rate has increased by 2%.

Subsequently, we train two new models denoted as F* and
G on all layers of Resnetl01, with additional improvements
designed to reduce false positives as much as possible. First,
we remove all images with generic circle and square shapes
from the training set. Specifically, categories 1, 2, 3, 5, 6, 8§,
and 9 now constitute the training set, while the remaining
categories 4, 7, Others and Unknown are moved to the
validation set. The goal is to have low performance on the
validation set so that generic squares and circles are ignored
in the training.

We also develop our own augmentation policy using the
ImgAug package [[17], to fix some of the apparent weaknesses
of Google’s approach from [13]]. Our policy includes many
sub-policies (FlipLR, FlipUD, Rotate, Affine rescale, Gaus-
sianBlur, HistogramEqualization, ShearX, ShearY, Enhance-
Sharpness and EnhanceBrightness) applied sequentially on the
image with a certain probability.

Model F’ is trained using Google’s policy, whereas model
G is trained with our own augmentation policy. As for model
F, augmentation strategy 2 is used to train model F’. We adopt
strategy 3 (see Section [[V) for model G by duplicating each
category 15 times to generate a very big dataset.

B. Additional Filters

1) Filtering Shadows: In order for a helicopter to land
safely, helipads need to be on a flat surface, without nearby
structures, hence free of any shadows. Shadows are evidence
of 3D structures that might impede a helicopter landing and
reduce the chances of a practicable helipad within the detected
bounding box. Some examples of shadows around false pos-
itive helipad detections from the Manila dataset are shown
in Figure 3] Therefore we implement the shadow detection
algorithm described in [18|]. In the first pass, this algorithm
selects shadow seeds from pixels satisfying specific properties.
In the second pass, region growing spreads the shadow from
the seeds to cover the entire shadow area. For our application,
this second pass is not needed.

We expand the bounding boxes slightly (by five pixels)
in each direction to cover the surroundings of the helipad
candidate. A bounding box is considered to have shadows if
it has more than 3 seeds after the first pass of the algorithm,
in which case we do not consider it a helipad.

Fig. 5: Examples of shadows detected in false positives

2) Filtering by Area: Helipads need a certain area to
provide enough space for a helicopter to land. According to
the FAA’s Advisory Circular on Heliport Design [19], the
minimum width, length or diameter of the final approach and
takeoff area (FATO) of a general aviation helipad is 1.5 times
the overall length of the helicopter. Among the most popular
commercial helicopters, we find the Eurocopter AS350 with
a length of 11 meters. An ideal landing area for this model
would be at least (11/2)? = 213m? or (11 x 1.5)% = 272m>.
In other words, a landing area of 300m? would comfortably
fit most light helicopters.

After obtaining the GPS coordinates of the four corners of
each bounding boxes, the physical length and width are com-
puted. To account the fact that bounding boxes are generally
a bit larger than the actual helipad, and to cater to a range of
helicopter sizes with lengths of 10-15m, we accept bounding
boxes with an area between 160m? and 550m? and filter all
other candidates.

3) Filtering by Score: This last filter removes all remaining
bounding boxes below a certain confidence score. This thresh-
old is for the user to choose and depends on the application.
A higher threshold will reduce false (and some true) positives,
whereas a lower threshold will increase them.

C. Results

The model is run to detect helipads on the Manila data.
We manually classify the detected bounding boxes into true
and false positives in order to evaluate the performance of the
model with our filters. The results are presented in Table [[V]

TABLE IV: Results of models F° and G on the Manila data,
with the filters (shadow, area, score) activated in sequence.

Model F G
Shadow| No Yes Yes Yes|No Yes Yes Yes
Areal No No Yes Yes|No No Yes Yes
Score| 0 0 0 099 0 0 0 0.99
Detections 1941 607

TP| 129 100 87 69 | 66 51 45 20

TN| 0 564 1111 1590, 0 208 348 511
FP|1812 1248 701 222|541 333 193 30

FN| O 29 42 60| 0 15 21 46

Accuracy|0.06 0.34 0.61
Error| 0.93 0.65 0.38
Precision| 0.06 0.07 0.11
Recall] 1 0.77 0.67

0.85(0.10 0.42 0.65 0.87
0.1410.89 0.57 0.35 0.12
0.23]0.10 0.13 0.19 0.4
0.53| 1 0.77 0.68 0.3




Fig. 6: Helipads detected by Model F’ on the map with precise
GPS coordinates.

Fig. 7: Closeup of a helipad detected by Model F’.
yellow label indicates the properties of the helipad: no shadow
detected (sF as Shadow False), ground area of 314m? (a314),
and a confidence score of 99% (990).

The

The effectiveness of the filters is evident from the results.
The shadow filter successfully removes 564 and 208 false
positives for models F’ and G, respectively, while losing only
29 and 15 true positives. The area filter removes a further
547 and 140 false positives, while losing only 13 and 6 true
positives. The score filter (with a threshold of 0.99) removes
479 and 163 false positives while losing only 18 and 25 true
positives. Figures [6] and [7] visualize the detected helipads on
the satellite map.

VIII. CONCLUSIONS

We created HelipadCat, a dataset of helipad images with
ground truth including geolocation, helipad categories, bound-
ing boxes, and exploring different augmentation strategies.
Training more layers has a positive impact on the benchmark

metrics. We obtain good models for helipad detection. The de-
tected bounding boxes are filtered using shadow detection, area

and score thresholds. Our three custom filters are effective,

increasing model accuracy and reducing false positives. The
city of Manila is analyzed extensively where many helipads
are located. However, this particular city is not representative
of the entire world. This is why we would like to extend the
study to other regions.

The ultimate goal is to run the prediction on entire countries
to construct a global helipad database. With the support of
Ascent Flights, we plan to verify the certification of detected
helipads, as the feasibility of a helicopter landing requires
compliance with rules imposed by local regulations. Fur-
thermore, we plan to expand the detection from designated
helipads to any area suitable for landing a helicopter or heavy-
lifting drone in urban areas.
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