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Abstract—Advertisements (ads) often contain strong emotions to cap-
ture audience attention and convey an effective message. Still, little work
has focused on affect recognition (AR) from ads employing audiovisual
or user cues. This work (1) compiles an affective video ad dataset which
evokes coherent emotions across users; (2) explores the efficacy of
content-centric convolutional neural network (CNN) features for ad AR
vis-ã-vis handcrafted audio-visual descriptors; (3) examines user-centric
ad AR from Electroencephalogram (EEG) signals, and (4) demonstrates
how better affect predictions facilitate effective computational advertising
via a study involving 18 users. Experiments reveal that (a) CNN features
outperform handcrafted audiovisual descriptors for content-centric AR;
(b) EEG features encode ad-induced emotions better than content-
based features; (c) Multi-task learning achieves optimal ad AR among
a slew of classifiers and (d) Pursuant to (b), EEG features enable
optimized ad insertion onto streamed video compared to content-based
or manual insertion, maximizing ad recall and viewing experience.

Index Terms—Affect Recognition; Advertisements; Perception;
Content-centric Features; Convolutional Neural Networks; EEG;
Multimodal; Multi-task Learning; Ad Insertion

1 INTRODUCTION

ADVERTISING is a pivotal industry in today’s digital
world, where advertisers showcase their products and

services as highly worthy and rewarding. Emotions play a
crucial role in conveying an effective message to viewers,
and are known to mediate consumer attitudes towards
brands [1]–[3]. Emotions are also critical for spreading
public health and safety awareness, where certain personal
choices are portrayed as beneficial, while others are por-
trayed as deleterious and possibly fatal. Therefore, the ability
to objectively characterize video advertisements (ads) in
terms of their emotional content has multiple applications–
e.g., inserting appropriate ads at optimal temporal points
within a video stream can benefit both advertisers and
consumers of video streaming websites such as YouTube [4],
[5]. Subjective experience of pleasantness (valence) and
emotional intensity (arousal) are important affective dimen-
sions [6], and both influence responses to ads in distinct
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ways [7]. Stimulus valence and arousal are also known to in-
fluence recall of images [8], movie scenes [9] and videos [4].

Only a few works have attempted prediction of ad
emotions despite the popularity of affective computing, and
interest in inferring emotions elicited by image [10], [11],
speech [12], audio [13], music [14] and movie [15], [16]
content. Affect recognition (AR) from video ads is non-
trivial as with music and movie clips [14], [15], [17], [18]
since human emotional perception is subjective. In lieu of
detecting discrete emotion categories such as joy and sorrow,
many AR works model emotions based on the valence (val)
and arousal (asl) dimensions [6], [19]. Overall, AR meth-
ods are broadly classified as content-centric or user-centric.
Content-centric AR models emotions by examining textual,
audio and visual cues [17], [18]. In contrast, user-centric
AR identifies elicited emotions from facial [20] or physio-
logical [9], [14]–[16] measurements acquired from users or
multimedia consumers. While enabling the study of various
emotional states, user-centered methods nevertheless suffer
from subjectivity issues.

This work expressly studies emotions conveyed by ads,
and employs (i) explicit user ratings and (ii) associated
content and user-centric measurements for ad AR. Firstly,
we examine the efficacy of 100 diverse, carefully curated
video ads to coherently evoke emotions across viewers.
To this end, we analyse affective first impressions of five
experts and 23 novice annotators to note that the two groups
are concordant. Secondly, we explore the utility of Convolu-
tional Neural Networks (CNNs) and domain adaptation for
encoding emotional audiovisual features. As our ad dataset
is relatively small and insufficient for CNN training, we
apply knowledge gained from the large-scale, annotated
LIRIS-ACCEDE movie dataset [21] for decoding ad emo-
tions. Extensive experimentation confirms that CNN de-
scriptors outperform handcrafted audio-visual descriptors
proposed in [17], with a substantial improvement observed
for val recognition.

Thirdly, we perform user-centric ad AR with EEG record-
ings from annotators, and show that a three-layer CNN
trained on EEG features performs best for both asl and
val recognition. To our knowledge, this is the first work
to elaborately compare content and user-centric methods
for ad AR. In addition, we explore multi-task learning and
feature/decision fusion for asl and val classification. Lastly,
we examine if accurate encoding of ad emotions facilitates
optimized insertion of ads onto a video stream, as ads
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chiefly contribute to the revenue of video hosting websites
such as YouTube. A study with 18 users confirms that inser-
tion of ads identified via EEG-based cues maximizes both
ad recall and viewing experience. In summary, we make the
following contributions:

1. We present one of the few works to examine ad
emotions extending prior findings [22], [23]. We also
characterize ad emotions in terms of explicit human
opinions, and underlying (content-centric) audiovi-
sual plus (user-centric) EEG features.

2. We present a carefully curated affective dataset of 100
ads and associated affective ratings. Based on statis-
tical analyses, we note that the ad dataset is capable
of evoking coherent emotions across disparate users.

3. We show that CNN-based transfer learning, achieved
by fine-tuning the Places205 Alexnet [24], effectively
captures audiovisual emotions. CNN features outdo
handcrafted descriptors proposed in [17].

4. We compare and contrast AR achieved with content
and user-based CNN features. An EEG-based CNN
model best encodes emotional attributes. Also, multi-
task learning to exploit similarities among emotion-
ally similar ads considerably benefits ad AR.

5. We show how improved AR enables better ad-
embedding onto a video stream. Optimized ad in-
sertion results in greater ad recall and an enhanced
viewing experience for users.

2 RELATED WORK

We review related work on (a) affect recognition (b) influ-
ence of ads on consumer behavior, and (c) computational
advertising to highlight research gaps and position our
work with respect to the literature.

2.1 Affect Recognition
Both content-centric and user-centric approaches have been
proposed to infer emotions evoked by multimedia stim-
uli. Content-centric methods [17], [18] predict the likely
elicited emotions by examining image, audio and video-
based emotion correlates [17], [23], [25]. In contrast, user-
centric AR methods [14]–[16] estimate the stimulus-evoked
emotion based on user behavioral (head pose and facial
emotion) and physiological cues. Physiological signals in-
dicative of emotions include pupillary dilation [26], eye-
gaze [9], [27] and neural activity [14], [15], [28]. Some works
also demonstrate the benefit of combining content and user
cues– audio-visual features extracted from video clips plus
facial responses of users watching those clips are combined
in [29] to achieve five-class affective categorization.

Both content and user centric methods require labels
denoting stimulus emotion; such labels are compiled from
annotators whose opinions are deemed acceptable [30], [31],
as emotion perception is highly subjective. We curate a set
of 100 ads which elicit similar emotions from both experts
and novice annotators.

2.2 Emotional impact of ads
Ad-induced emotions significantly influence consumer be-
havior both explicitly and implicitly [1]–[3], especially for

hedonistic products. While many works examine the corre-
lation between ad emotions and user behavior, few works
utilize these findings for targeted advertising. The only
work to incorporate emotional information for advertising
is CAVVA [4], where ad-in-video insertion is modeled as
a discrete optimization problem based on emotional rele-
vance between video scenes and ads. Based on consumer
psychology rules, asl and val scores of video scenes and ads
are matched to determine (a) suitable ads for presentation
and (b) optimal ad insertion points that maximize user
engagement. Two recent related works [22], [23] show how
improved ad AR positively impacts viewing experience will
watching an ad-embedded video.

2.3 Computational advertising

Exploiting AR models for commercial applications has
gained interest lately. Computational advertising focuses
on presenting contextually relevant ads to multimedia users
for commercial benefits or social good. Despite the fact that
ads are emotional, computational advertising methods have
mainly matched low-level features between video segments
and candidate ads [32], ignoring emotional relevance. A
paradigm shift in this regard was introduced by CAVVA [4],
which proposes optimized ad insertion based on emotional
relevance. CAVVA achieves content-based asl and val match-
ing of video scenes and ads; such matching can also be done
via a user-centric framework [26]. We explore both content
and user-centric cues for performing ad insertions.

2.4 Analysis of related work

Related literature reveals that (1) AR studies are hampered
by emotional subjectivity, and a control dataset coherently
evoking user emotions is critical to this end; (2) Even though
ads are emotional and ad emotions significantly impact
user behavior, little effort has been devoted towards incor-
porating emotional video-ad relevance for computational
advertising. To address these issues, we present a control
set of affective ads which elicit concordant opinions from
both experts and naive users. We then leverage CNNs for
learning audiovisual and EEG-based emotion predictors.
Optimal AR is achieved with a CNN classifier employing
EEG features, while CNN-based audiovisual descriptors
outperform handcrafted features proposed in [17]. We also
show how better affect encoding facilitates ad-to-video in-
sertion through the CAVVA mechanism [4] via a user study.

3 ADVERTISEMENT DATASET

This section describes our ad dataset and protocol em-
ployed for collecting user ratings plus EEG responses.

3.1 Dataset Description

The circumplex emotion model [6] defines valence as the
feeling of pleasantness/unpleasantness and arousal as the
intensity of emotional feeling. Following this definition, five
experts (authors of this work) carefully evaluated and com-
piled a dataset of 100, roughly 1-minute long commercial
ads such that they were uniformly distributed over the
arousal–valence plane (Figure 1). The 100 ads are publicly
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TABLE 1
Summary statistics for quadrant-wise ads.

Quadrant Mean length (s) Mean asl Mean val

H asl, H val 48.16 2.17 1.02
L asl, H val 44.18 1.37 0.91
L asl, L val 60.24 1.76 -0.76
H asl, L val 64.16 3.01 -1.16

Fig. 1. (left) Scatter plot of mean (discrete) asl, val ratings provided by
annotators, color-coded with expert labels. (middle) Asl and (right) Val
rating distribution with Gaussian pdf overlay (view under zoom).

available on video hosting websites1, and an ad was chosen
only if there was consensus among all experts on its valence
and arousal labels (categorized as either high (H)/low (L)).
High valence ads typically involved product promotions,
while low valence ads were awareness messages depicting
ill effects of smoking, alcohol, drug abuse, etc. Expert labels
were considered as ground-truth in all experiments.

We then examined if the compiled ads could coherently
evoke emotions across viewers. To this end, the 100 ads were
independently rated by 23 annotators for val and asl. An-
notators were familiarized with these emotional attributes
prior to the rating task. All ads were rated on a 5-point scale,
which ranged from -2 (very unpleasant) to 2 (very pleasant) for
val and 0 (calm) to 4 (highly aroused) for asl. Table 1 presents
summary statistics for the ads. Our low val ads are longer,
and are found to elicit stronger emotional reactions from
viewers based on the compiled asl scores.

To assess whether the compiled ads evoked coherent
emotions, we computed inter-rater agreement via the (a)
Krippendorff’s α, (b) Fleiss κ and (c) Cohen’s κ scores. The
α coefficient is applicable when multiple raters rate items
ordinally. We obtained α = 0.62 (substantial agreement) and
0.36 (fair agreement) respectively for val and asl, implying
that val impressions were more consistent across raters. We
also computed the Fleiss κ agreement among annotators.
The Fleiss κ statistic (generalization of Cohen’s κ) applies
when multiple raters assign categorical values (high/low in
our case) to items. Upon thresholding each rater’s asl, val
scores by their mean rating to assign high/low labels for
each ad, we observed a Fleiss κ of 0.56 (moderate) for val and
0.27 (fair) for asl among raters. Finally, computing Cohen’s κ
agreement between each annotator and groundtruth labels
(denoting expert opinion), we obtained a mean Cohen’s κ
of 0.86 (excellent agreement) and 0.68 (substantial agreement)
across annotators for val and asl respectively. Overall, these
observations convey (a) considerably higher agreement for
val than for asl and (b) consistent affective impressions the
compiled ads evoke in the annotator and expert groups.

Another desirable property of an affective dataset is the
relative independence of the asl and val dimensions [6], [33].
To examine asl-val relations for our dataset, we (i) exam-
ined scatter plots of annotator ratings, and (ii) computed

1. details @ http://abhinav95.github.io/projects/mm17/dataset

correlations amongst ratings. Scatter plot of the mean asl,
val annotator ratings, and the distribution of these ratings
are shown in Fig. 1. The scatter plot color-coded based on
expert labels, is different from the ‘C’ shape observed in
prior works [14], [15], [34], and attributed to the hypothesis
that only high asl evokes high val ratings. Examination of
the scatter plot reveals that a number of ads are rated as
moderate asl, but high/low val. Also, roughly uniform asl
and val distributions are observed resulting in Gaussian fits
with large variance, especially for val. This is plausible as
ads are designed to convey a strong positive or negative
message, while images and movie scenes may convey a
relatively neutral emotion. Wilcoxon rank sum tests on
ratings expectedly revealed different asl values for high vs.
low asl ads (p < 0.0001), and distinctive val scores for high
vs. low valence ads (p < 0.0001).

Pearson correlation between asl and val ratings with
correction for multiple comparisons [35] revealed a negative
and insignificant correlation of 0.17, implying that ad asl
and val impressions were largely unrelated. Consequently,
our 100 ads constitute a control affective dataset as (i) they
induce a large range of asl and val impressions, which are
also found to be largely independent; Different from the
‘C’-shape characterizing the asl-val relationship for other
stimulus types, asl and val ratings are more uniformly dis-
tributed for the ad stimuli, and (ii) there is fair-to-substantial
concordance among annotators in addition to the high level
of agreement between novice raters and experts on affective
labels, implying that our ads evoked coherent emotions.

3.2 EEG acquisition protocol
We recorded Electroencephalogram (EEG) brain signals of
the 23 raters via the Emotiv wireless, wearable headset. The
Emotiv device comprises 14 electrodes and has a sampling
rate of 128 Hz. To maximize engagement and minimize
fatigue during the rating task, raters took a break after every
20 ads, and viewed the 100 ads over five sessions spanning
two hours. Each ad was preceded by a 1s fixation cross
to orient user attention, and to measure resting state EEG
for baseline power subtraction. Raters had to record their
asl and val impressions via mouse clicks within 10s upon
ad viewing. EEG recordings were segmented into epochs,
denoting the ad viewing trials. Upon removing corrupted
and aborted recordings, we totally obtained 1738 epochs.

From 1738 recorded epochs, we manually rejected
epochs with movement-related artifacts. EEG was band-
limited between 0.1–45 Hz, and independent component
analysis (ICA) was performed to remove eye movement, eye
blink and muscle movement artifacts. This process removed
212 epochs to leave us with 1526 clean epochs. Hereon,
clean EEG data will refer to the 1526 pre-processed epochs,
whereas raw EEG data will denote the original 1738 epoch
data– we attempted CNN-based AR on both data.

4 CONTENT & USER-CENTERED AR

4.1 Content-centered Analysis
For content-centered analysis, we extracted and examined
audio-visual descriptors from the ads to predict the emotion
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Fig. 2. SGs computed for an exemplar (left) low asl, high val, (middle)
high asl, high val and (c) high asl, low val ad. x denotes time (0-10s
with 40ms resolution), while y denotes frequency (range of 0 to 14 kHz).
Higher spectral intensities are encoded in yellow and red, while lower
intensities are shown in blue and green.

(in terms of high/low asl and val) they are likely to evoke. To
this end, we employed a deep convolutional neural network
(CNN), and the popular handcoded audio-visual descrip-
tors (such as motion activity, audio pitch, etc.) proposed by
Hanjalic and Xu [17]. CNNs are employed for many recog-
nition problems, particularly visual [36] and audio [37],
but require vast labeled datasets. As our dataset comprised
only 100 ads, we fine-tuned the pre-trained Places205 [36]
model via the large-scale and labeled LIRIS-ACCEDE movie
dataset [21], and utilized the resulting model to extract
emotional ad descriptors– this process is termed domain
adaptation in machine learning literature.

The Places205 model [36] is originally designed for
scene understanding. It is trained on the Places-205 dataset
comprising 2.5 million images from 205 scene categories.
Places-205 contains a wide variety of scenes captured under
varying illumination, viewpoint and field of view, and we
hypothesized a coherent relation between scene perspective,
lighting and the scene emotion. To find-tune the Places205
CNN, we employed the LIRIS-ACCEDE dataset [21] which
contains asl, val ratings for 9800 ≈ 10s long movie snippets.
Our ads, contrastingly, range from 30–120s.

4.1.1 FC7 feature extraction via CNNs
To extract deep audio-visual features for ads, we input to the
Places205 CNN key-frame images for video, and spectrograms
for audio. We fine-tuned Places205 via LIRIS-ACCEDE [21],
and extracted features output by the penultimate fully
connected (FC7) CNN layer.

Keyframes as Visual Descriptors: From each training
video, we uniformly sampled one keyframe every 3s– this
generated a continuous video profile for AR, and 1791
keyframes were sampled from our 100 ads.

Spectrograms as Audio Descriptors: Spectrograms (SGs,
see Fig 2) are visual representations of the audio frequency
spectrum and have been employed for music and speech
AR [38]. Transforming audio content to a spectrogram
image translates audio classification to a visual recognition
problem. We extracted SGs over the 10s long LIRIS-
ACCEDE clips, and consistently from 10s ad segments.
This process generated 610 SGs for our ad dataset.
Following [38], we combined multiple tracks to obtain a
single SG (instead of two for stereo). Each SG is generated
using a 40ms window short time Fourier transform (STFT),
with 20ms overlap. Larger densities (denoted by red and
yellow shades) of high frequencies can be noted in the
SGs for high asl ads, as these intense scenes are often
characterized by high frequency (e.g., sudden loud sounds).

Conversely, low asl ads tend to sustain the audio, and
therefore contain high densities of low frequency sounds.

CNN Training for audio-visual features: We used the
Caffe [39] framework for fine-tuning Places205 with a mo-
mentum of 0.9, weight decay of 0.0005, and a base learn-
ing rate of 0.0001 reduced by 1

10

th
every 20000 iterations.

We totally trained four binary classifiers to recognize high
and low asl/val from audio/visual features. To fine-tune
Places205, we used only the top and bottom 1/3rd-ranked
LIRIS-ACCEDE videos based on asl and val ratings; we
expected these extreme-rated clips will better train a model
for inferrring ad emotions. 4096-dimensional FC7 layer de-
scriptors extracted for our ads from the four networks were
used for ad AR.

4.1.2 AR with low level audio-visual features
We benchmark CNN features against handcrafted features
proposed by Hanjalic and Xu [17] for ad AR. [17] still
remains a very popular AR baseline as seen from recent
works [14], [15]. In [17], asl and val are modeled via low-
level descriptors describing motion activity, colorfulness,
shot change frequency, voice pitch and sound energy. These
predictors are intuitive and interpretable, and are employed
to estimate time-continuous asl and val levels. Table 2
summarizes the content-centric AR features. We perform AR
at the keyframe/spectrogram level, while per-frame class
probabilities are aggregated to obtain ad-level scores for the
computational advertising application (Section 6).

4.2 User-centered Analysis
1738 raw or alternatively, 1526 clean EEG epochs were
used for user-centered experiments, to examine how noise
impacted EEG-based AR. These epochs were of different
lengths as ad durations were variable. For dimensional con-
sistency and to examine temporal effects, we utilized the (a)
first 3667 samples (≈ 30s of EEG data), (b) last 3667 samples
and (c) last 1280 samples (10s EEG data) from each epoch.
Epochs comprising data from 14 EEG channels were input
to classifiers upon vectorization. On top of conventional
classifiers, we also used a deep neural network to classify
EEG epochs as described below.

4.2.1 EEG Feature Extraction for CNN Training
As we used relatively few (1738) epochs with high
dimensionality (14 channels × 3667 time points = 51338
dimensions), a CNN trained on this data is susceptible to
overfitting. Therefore, we applied Principal Component
Analysis (PCA) to reduce epoch dimensionality. PCA has
been successfully employed to obtain a good input for
CNN-based EEG classification [40]–[46].

CNN Training for EEG features: Dimensionality-reduced
EEG features (preserving 90% data variance) were passed to
a CNN for val, asl recognition. We used a CNN employed
for time-series data classification [47] and implemented with
the Keras [48] library. This three-layer network has two 1D
convolutional layers and a fully-connected layer. Training
was performed with 64 1× 3 filters in the 1D convolutional
layers and 128 nodes in the fully connected layer. Other
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TABLE 2
Extracted features for content-centric AR. +ve class proportions (as %)

for val/asl in the audio and visual modalities are specified.

Attribute Valence/Arousal
Descriptors Audio Video aud+vid (A+V)

CNN 4096D FC7 features 4096D FC7 features 8192D FC7 features
Features from 10s SGs. extracted from keyframes from SGs + keyframes

sampled every 3 seconds. over 10s intervals.
Hanjalic [17] Per-second sound Per-second shot change Concatenation of

Features energy and pitch frequency and motion audio-visual features.
statistics [17]. statistics [17].

+ve class 43.8/51.9 43.4/51.6 43.8/51.9
prop (%)

parameters include a momentum of 0.9, weight decay of
0.0005 and a base learning rate of 0.0001. A dropout level of
0.5 was used to prevent overfitting. The model was trained
for 100 epochs, and early stopping was enforced if validation
loss increased over five successive iterations. For content
and user-centric AR, 80% training and 20% test data were
used with 10-fold repetition (10 × 5-fold cross validation).
Training and test sets were mutually exclusive in both cases,
i.e., data corresponding to each ad video were either part of
the training or test set.

5 EXPERIMENTS AND RESULTS

We first describe the settings and classifiers employed for
binary content and user-centric AR, where the objective is
to assign a H/L label for the asl and val evoked by each
ad, with fc7/low-level audiovisual/EEG features. Ground
truth labels are as provided by the experts.

Metrics and Experimental Settings: We used the F1-score
(F1) defined as the harmonic mean of precision and recall
as our performance metric. F1 is apt for our setting due to
the slightly imbalanced class distribution. We compare our
audiovisual fc7 and EEG features against Han features [17],
which are interpretable, and employed to dynamically es-
timate scene emotions. As [17] inherently uses audiovisual
emotional features, we only consider feature and decision
fusion for Han. User-centered AR employs PCA-applied
EEG features (Sec. 4.2.1).

As we perform AR on a small dataset, results obtained
over ten repetitions of 5-fold cross validation (CV), i.e.,
totally 50 runs are presented. CV is used to overcome
overfitting on small datasets, and SVM parameters are tuned
from the range [10−3, 103] via an inner five-fold CV on the
training set. In order to examine temporal variation in AR,
we present F1 obtained over (a) all ad frames (‘All’), (b)
last 30s (L30) and (c) last 10s (L10) for content-centered AR.
Similarly, results are presented for (a) first 30s (F30), (b) last
30s (L30) and (c) last 10s (L10) for user-centered AR. These
settings were chosen as the sampling rate is much higher
for EEG as compared to audio/video.

Classifiers: We considered both shallow and deep classifiers
for AR. Among shallow classifiers, we employed linear
discriminant analysis (LDA), linear SVM (LSVM) and radial
basis function SVM (RSVM). LDA and LSVM partition
training data via a separating hyperplane, while RSVM
transforms input data to a high-dimensional feature space
where the samples are linearly separable. Audiovisual fc7
descriptors were input to shallow classifiers for content-
centered analysis, while EEG features were fed to the shal-
low and CNN classifiers for user-centered AR.

Apart from the above single-task learning methods, we
also explored multi-task learning (MTL) for AR. While learn-
ing multiple related tasks, MTL jointly learns a set of task-
specific classifiers by modeling task relations, which is
highly beneficial when learning with few data. Among the
MTL methods available as part of MALSAR [49], we em-
ployed the sparse graph-regularized MTL (SR-MTL) where
a-priori knowledge regarding task-relatedness is modeled
via a graph. MTL is inherently suited for dimensional AR, as
one can expect audio-visual similarities among emotionally
similar ads. We model each asl-val quadrant as a task (e.g., all
H asl, H val ads will have identical labels). Also, quadrants
with same asl/val labels are deemed related, while those
with dissimilar labels are considered unrelated. Task relat-
edness is modeled via graph edge weights with weights of
1 and 0 respectively for related and unrelated tasks.

The graph then guides learning of task weights as shown
in Fig. 3, where SR-MTL is fed with the specified features
computed over the final 30s of all ads. Darker shades denote
large MTL weights. Shot change frequency is a key predictor
of asl [17], and one can notice high weights for H asl, H val
ads in particular. The attributable reason is that H asl H
val ads involve frequent shot changes to convey emotional
intensity, while the mood of H asl, L val ads is mainly
influenced by scene semantics (depicting drug and alcohol
abuse, and overspeeding). Likewise, pitch amplitude is a
key val predictor, and salient weights can be consistently
seen over the 30s temporal window for HV ads. Finally,
higher weights for H val ads with the motion activity feature
are indicative of accentuated motion.

For content-centric AR, apart from unimodal (audio (A)
or visual (V)) fc7 features, we also employed feature fusion
(A+V entries in Table 3). Probabilistic decision fusion (DF)
of the unimodal classifier outputs are denoted by ‘A+V
DF’ entries in Table 3, and by ‘A+ V + EEG DF entries’
in Table 5. Audiovisual feature fusion (A+V) involved con-
catenation of fc7 A and V features over 10s windows (see
Table 2), while the West technique [50] was employed for
decision fusion. In DF, the test label is assigned the index j,
j ∈ {H(1) ,L(0)}, corresponding to maximum class proba-
bility Pj =

∑2
i=1 α

∗
i tipi, where i denotes the constituent

modalities, pi’s denote posterior class probabilities and {α∗
i }

are the weights maximizing test F1, and determined via a
2D grid search. If Fi denotes the training F1-score for the
ith modality, then ti = αiFi/

∑2
i=1 αiFi for given αi. Note

here that (i) the use of a validation set for parameter tuning
is precluded by the small dataset size as with [1,18] and (ii)
DF F1 scores denote ’maximum possible’ performance.

5.1 Results Overview

Tables 3 and 4 respectively present content and user-centric
AR results, while Table 5 presents the audiovisual+EEG
fusion results. Highest F1 achieved for a given modality
over all classifiers and temporal settings is denoted in bold.
We elaborate the results as follows.
Content-centric Analysis: Focusing on unimodal descrip-
tors in Table 3, video fc7 features predict val (peak F1 =
0.79) considerably better than asl, while audio fc7 features
encode asl (peak F1 = 0.68) slightly better than val (peak F1 =
0.66). Also, MTL (peak F1 = 0.96 for val, 0.94 for asl) starkly
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Shot Frequency Pitch Amplitude Motion Activity
Fig. 3. Learned MTL weights for the four quadrants (tasks) when fed with the specified low-level features computed over the final 30s of 100 ads.

outperforms single task classifiers. With both single and
multi-task classifiers, higher F1-scores are noted with video
fc7 features, implying that the raw video frames achieve
better AR than spectrograms.

We then note that multimodal methods perform com-
parable or better than unimodal ones. For val, the best
fusion F1 (0.75 with feature fusion + RSVM) is superior to
audio (F1 = 0.66), but inferior to video (F1 = 0.79). Con-
trastingly for asl, decision fusion (F1 = 0.75) considerably
outperforms unimodal methods (0.68 with A, and 0.67 with
V). Examining feature fusion approaches, A+V fc7 features
outdo Han features on both single and multi-task methods.
Performance difference is prominent for val (F1 = 0.75 with
fc7 vs 0.65 with Han), while comparable AR is achieved for
asl (F1 of 0.63 with fc7 vs 0.59 with Han).

Examining AR performance with DF, DF (F1 = 0.75)
substantially outperforms feature fusion (F1 = 0.59) for asl,
while underpeforming for val (F1 = 0.72 with DF and 0.75
with feature fusion). Among classifiers, RSVM produces the
best F1-scores among single-task classifiers with all features.
This indicates that the A+V fc7 features are not easily
linearly separable as such. Nevertheless, the linear MTL
model beats all single-task methods with both fc7 and Han
features. A+V fc7 + MTL F1-scores are second best after
video fc7 + MTL, which achieves optimal AR. Therefore,
learning feature similarities among emotionally similar ads
enables better separability of H and L asl/val data.
EEG-based AR: Here, we mainly examine whether (a) better
AR is achievable with EEG vis-ã-vis audiovisual features; (b)
the three-layer CNN (Section 4.2.1) better encodes emotions
as compared to shallow classifiers, and (c) whether the
considered CNN architecture can perform similarly with
clean vs noisy EEG signals (i.e., epochs involving muscle
movement artifacts), as CNNs can effectively learn target
encodings from disparate data.

Observing Table 4, we firstly note that EEG-based results
are generally superior to content-centric ones. The best EEG-
based val and asl F1’s are considerably higher than the
best content-based unimodal results. As with audiovisual
features, EEG achieves better val recognition different from
prior findings [14]–[16]. In this regard, we observe that
positive val correlates with increased activity in the frontal
lobes [51], and the Emotiv device efficiently captures frontal
lobe activity despite its limited spatial resolution.

Among the three shallow classifiers, RSVM again per-
forms best with EEG. However, the three-layer CNN
achieves optimal AR, considerably outperforming other
classifiers. Also, while very comparable results are achieved
with the raw and clean EEG data with shallow classifiers,
larger differences are noted with the CNN and MTL meth-

ods. Therefore, while all the methods are able to work with
noisy EEG data, the CNN and MTL methods can better uti-
lize the cleaned EEG data. As with audiovisual descriptors,
highest F1-scores with EEG (close-to-ceiling performance for
both val and asl) are also obtained with the MTL classifier,
reinforcing its utility for emotion recognition.
General Observations: Relatively small σ values, denoting
minimal variance in cross-validated AR performance, are
observed in the ‘All’ condition with both audiovisual and
EEG CNN features in Tables 3 and 4. These trends reveal
that the classification models are minimally impacted by
overfitting. Examining temporal windows for audiovisual
AR, significantly higher σ’s are noted with Han features
as well as with the L30 and L10 temporal segments, con-
veying that those models do not generalize well. Higher
σ’s are observed for the L30 and L10 conditions reveal the
greater variance in AR performance on terminal ad frames.
Contrastingly, very similar σ’s are noted for the different
temporal windows considered with EEG data in Table 4.

Interestingly in Table 3, one can note a considerable dip
in asl recognition for the L30 and L10 conditions with A
and V features, while val F1-scores are more consistent with
the ’All’ condition. Also, a sharp fall in MTL performance
is noted for L30 and L10. The above trends reveal that
(1) Greater heterogeneity in ad content towards endings
is highlighted by the large variance in the L30 and L10
conditions with uni/multimodal features; conversely, con-
sistent AR performance is noted with EEG features for the
different temporal segments. Therefore, while audiovisual
content conveying ad emotion may significantly vary over
time, human viewers typically grasp the conveyed emotion
rather instantaneously; (2) Fusion models synthesized with
Han features are most prone to overfitting, given the larger
σ values seen with respect to other models. (3) Lower asl
recognition in the L30 and L10 conditions highlights the lim-
itation of using a single asl/val label (as opposed to dynamic
labeling) over time. Generally lower F1-scores achieved for
asl with all methods in Table 3, implying that asl is a more
transient phenomenon than val (this also explains the lower
agreement for asl in Section 3.1), while coherency between
val features and labels sustains over time.
Fusion of Content and User-Centric Modalities: Given
the difference in AR performance for and user-based fea-
tures (especially the variance across temporal segments),
one could argue that the audiovisual and EEG modalities
encode complementary information. Therefore, we exam-
ined if fusing the content (A+V fc7) and EEG outputs
resulted in better asl/val recognition. Corresponding results
are tabulated in Table 5.

Comparing Table 5 against Tables 3 and 4 clearly reveals
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TABLE 3
Ad AR from content analysis. F1 scores are presented in the form µ± σ.

Method Valence Arousal
F1 (all) F1 (L30) F1 (L10) F1 (all) F1 (L30) F1 (L10)

Audio FC7 + LDA 0.61±0.04 0.62±0.10 0.55±0.18 0.65±0.04 0.59±0.10 0.53±0.19
Audio FC7 + LSVM 0.60±0.04 0.60±0.09 0.55±0.19 0.63±0.04 0.57±0.09 0.50±0.18
Audio FC7 + RSVM 0.64±0.04 0.66±0.08 0.62±0.17 0.68±0.04 0.60±0.10 0.53±0.19

Video FC7 + LDA 0.69±0.02 0.79±0.08 0.77±0.13 0.63±0.03 0.58±0.10 0.57±0.18
Video FC7 + LSVM 0.69±0.02 0.74±0.08 0.70±0.15 0.62±0.02 0.57±0.09 0.52±0.17
Video FC7 + RSVM 0.72±0.02 0.79±0.07 0.74±0.15 0.67±0.02 0.62±0.10 0.58±0.19
Audio FC7 + MTL 0.85±0.02 0.83±0.10 0.78±0.20 0.78±0.03 0.62±0.14 0.45±0.16
Video FC7 + MTL 0.96±0.01 0.94±0.07 0.82±0.25 0.94±0.01 0.87±0.12 0.63±0.29
A+V FC7 + LDA 0.70±0.04 0.66±0.08 0.49±0.18 0.60±0.04 0.52±0.10 0.51±0.18

A+V FC7 + LSVM 0.71±0.04 0.66±0.07 0.49±0.19 0.56±0.04 0.49±0.10 0.47±0.19
A+V FC7 + RSVM 0.75±0.04 0.70±0.07 0.55±0.17 0.63±0.04 0.56±0.11 0.49±0.19
A+V Han + LDA 0.59±0.09 0.63±0.08 0.64±0.12 0.54±0.09 0.50±0.10 0.58±0.08

A+V Han + LSVM 0.62±0.09 0.62±0.10 0.65±0.11 0.55±0.10 0.51±0.11 0.57±0.09
A+V Han + RSVM 0.65±0.09 0.62±0.11 0.62±0.12 0.59±0.12 0.58±0.11 0.56±0.10
A+V FC7 LDA DF 0.60±0.04 0.66±0.04 0.70±0.19 0.59±0.02 0.60±0.07 0.57±0.15

A+V FC7 LSVM DF 0.65±0.02 0.66±0.04 0.65±0.08 0.60±0.04 0.63±0.10 0.53±0.13
A+V FC7 RSVM DF 0.72±0.04 0.70±0.04 0.70±0.12 0.69±0.06 0.75±0.07 0.70±0.07
A+V Han LDA DF 0.58±0.09 0.58±0.09 0.61±0.09 0.59±0.06 0.59±0.07 0.61±0.08

A+V Han LSVM DF 0.59±0.10 0.59±0.09 0.60±0.10 0.61±0.05 0.61±0.08 0.60±0.09
A+V Han RSVM DF 0.60±0.08 0.56±0.10 0.58±0.09 0.58±0.09 0.56±0.06 0.58±0.09

A+V FC7 + MTL 0.89±0.03 0.88±0.11 0.77±0.26 0.87±0.03 0.68±0.17 0.46±0.20
A+V Han + MTL 0.77±0.04 0.79±0.07 0.74±0.15 0.78±0.04 0.73±0.11 0.58±0.22

TABLE 4
Ad AR from EEG analysis. F1 scores are presented in the form µ± σ.

Method Valence Arousal
F1 (F30) F1 (L30) F1 (L10) F1 (F30) F1 (L30) F1 (L10)

Raw EEG + LDA 0.79 ± 0.02 0.78 ± 0.02 0.76 ± 0.03 0.76 ± 0.02 0.76 ± 0.02 0.72 ± 0.04
Raw EEG + LSVM 0.78 ± 0.03 0.77 ± 0.04 0.77 ± 0.05 0.75 ± 0.03 0.74 ± 0.02 0.70 ± 0.04
Raw EEG + RSVM 0.80 ± 0.03 0.79 ± 0.03 0.79 ± 0.03 0.77 ± 0.03 0.77 ± 0.04 0.74 ± 0.04
Clean EEG + LDA 0.79 ± 0.03 0.79 ± 0.03 0.77 ± 0.03 0.76 ± 0.03 0.75 ± 0.03 0.71 ± 0.04

Clean EEG + LSVM 0.77 ± 0.03 0.76 ± 0.04 0.77 ± 0.05 0.74 ± 0.03 0.73 ± 0.02 0.69 ± 0.04
Clean EEG + RSVM 0.82 ± 0.03 0.82 ± 0.03 0.81 ± 0.03 0.78 ± 0.02 0.77 ± 0.03 0.75 ± 0.04

Raw EEG + CNN 0.85 ± 0.03 0.85 ± 0.03 0.83 ± 0.03 0.84 ± 0.02 0.82 ± 0.03 0.79 ± 0.04
Clean EEG + CNN 0.89 ± 0.05 0.88 ± 0.04 0.88 ± 0.05 0.87 ± 0.03 0.85 ± 0.04 0.80 ± 0.06
Raw EEG + MTL 0.92 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.90 ± 0.02 0.87 ± 0.04 0.85 ± 0.05

Clean EEG + MTL 0.97 ± 0.01 0.97 ± 0.01 0.93 ± 0.03 0.96 ± 0.01 0.94 ± 0.02 0.90 ± 0.04

TABLE 5
Probabilistic fusion of audiovisual & EEG classifier outputs. F1 scores are presented in the form µ± σ.

Method Valence Arousal
F1 (F30) F1 (L30) F1 (L10) F1 (F30) F1 (L30) F1 (L10)

(Raw EEG + RSVM) + (A+V fc7 RSVM) DF 0.85 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.83 ± 0.03 0.80 ± 0.04
(Raw EEG + CNN) + (A+V fc7 RSVM) DF 0.87 ± 0.03 0.87 ± 0.03 0.86 ± 0.02 0.86 ± 0.01 0.85 ± 0.03 0.83 ± 0.04

(Clean EEG + RSVM) + (A+V fc7 RSVM) DF 0.86 ± 0.03 0.85 ± 0.03 0.86 ± 0.03 0.85 ± 0.02 0.83 ± 0.04 0.82 ± 0.04
(Clean EEG + CNN) + (A+V fc7 RSVM) DF 0.91 ± 0.03 0.89 ± 0.03 0.88 ± 0.02 0.88 ± 0.02 0.87 ± 0.02 0.84 ± 0.04

that fusing information from the two sources is beneficial.
Fusion-based asl and val F1-scores are consistently better
than individual counterparts, and considerably superior
when shallow classifiers are employed for prediction (rows
1 and 3). These findings reveal the potential for fusion of
content-centric and user-centric cues, as in [52]–[54].

6 COMPUTATIONAL ADVERTISING - USER STUDY

Obtained AR results reveal that the audiovisual fc7 and
EEG descriptors outdo Han features. This section demon-
strates that improved AR positively impacts computational
advertising– specifically, better ad AR facilitates optimized
insertion of ads onto streamed (e.g., YouTube) video. We
hypothesize that optimized ad insertion will result in: (1)
maximal ad recall, and (2) the best viewing experience.

The question that we seek to answer here is Whether
better affect estimation, achieved by the CNNs harnessing au-
diovisual and EEG descriptors, leads to optimal insertion of ads at

appropriate scene transition points in a video sequence? A princi-
pled methodology to insert ads in video is proposed by the
CAVVA algorithm [4]. CAVVA is a genetic algorithm-based
optimization for inserting ads onto streamed video. On top
of low-level context matching by advertising frameworks
such as VideoSense [32], CAVVA models affective relevance
between video scenes and inventory ads to determine the
(a) suitable ads to insert, and (b) the best temporal positions
where the chosen ads should be inserted.

Based on insights from consumer psychology, CAVVA
proposes ad insertion rules that seek to strike a balance
between (a) maximizing brand memorability (ad recall), and
(b) minimally disrupting (or enhancing) viewer engagement
and experience. To examine the above research question, we
performed a study with CAVVA and 18 users to compare
ad recall and subjective quality of advertising schedules
generated with affective scores estimated via (a) the audio-
visual CNN model, (b) the EEG CNN model and (c) ratings
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TABLE 6
Summary of program video statistics.

Name Scene length (s) Manual Rating
Valence Arousal

coh 127±46 0.08±1.18 1.53±0.58
ipoh 110±44 0.03±1.04 1.97±0.49

Friends 119±69 1.08±0.37 2.15±0.65

provided by experts. Details on the (i) ad and video data
employed, (ii) ad insertion strategies and (iii) user study
and associated results are as follows.

6.1 Ad and Video Datasets
For the user study, we used 28 ads (out of the original
100), and three program videos. The 28 ads were equally
distributed among the four val-asl quadrants based on the
expert labels. Program videos were scenes from a television
sitcom (Friends) and two movies (In pursuit of Happiness
(ipoh) and Children of Heaven (coh)), which predominantly
depicted social themes and situations invoking high-to-low
valence and moderate arousal (see Table 6 for statistics).
Each program video comprised eight scenes implying that
there were seven possible ad-insertion or scene transition
points. The average scene length in the considered program
videos was 118 seconds.

6.2 Advertisement insertion strategy
We used three affect estimation models (audiovisual CNN,

EEG CNN and manual) to provide asl, val scores for the ads.
Asl, val scores for the 24 program video scenes (8 scenes ×
3 videos in Table 6) were computed as mean of the ratings
(between [-2,2] for val and [0,4] for asl) acquired from three
experts, and rescaled to [0,1] via min-max normalization.
Ad affect scores were computed as follows. For the content-
centric method, we used normalized softmax class probabil-
ities output by the video CNN model [55] for val estimation,
and similarly probabilities from the audio CNN for asl
estimation. The mean score computed over all video/audio
frames was used to denote an ad’s affective score. Similarly,
mean of the normalized softmax probabilities over all EEG
epochs for an ad was used to denote the user-centric EEG
asl, val scores. Average of continuous val and asl ratings
annotated by five experts via FeelTrace [56] was used to
denote ad affect scores in the Manual method.

We then adopted the CAVVA optimization frame-
work [4] to obtain nine unique video program sequences
(VPSs with an average length of 19.6 minutes) comprising
the inserted ads. These VPSs constitute the different combi-
nations of the three program videos and the employed affect
estimation approach (audiovisual/EEG/manual). Exactly
five (out of seven possible) ads were inserted onto each
program video. 21 of the 28 chosen ads were inserted at
least once into the nine video programs, with maximum and
mean insertion rates of 5 and 2.14 respectively. Among the
21 inserted ads, 13 had been labeled as high val by experts,
while 10 were labeled as high asl.

6.3 Experiment and Questionnaire Design

To evaluate the subjective quality of the generated VPSs
and thereby the efficacy of the affect estimation techniques

for computational advertising, we recruited 18 users (7
female, mean age 20.1 years) who were university students.
Each user viewed three VPSs in random order such that each
VPS was generated via a unique affect estimation approach. We
used a randomized 3×3 Latin square design to cover all the
nine VPSs with every three users. Thus, each VPS was seen
by six of 18 users, and we have a total of 54 unique user
responses (18 users × three video modes per user).

We designed the user evaluation so as to reveal whether
the generated VPSs (a) included seamless ad insertions,
(b) facilitated user engagement (or alternatively, resulted in
minimal disruption) towards the VPS content and (c) en-
sured a pleasant overall viewing experience and maximized
brand memorability. To this end, we evaluated whether
a particular ad insertion strategy resulted in (i) increased
brand recall (both immediate and long-term recall) and (ii)
minimally disruptive (or improved) viewing experience.

Recall evaluation is intended to verify if the inserted
ads were attended to and remembered by viewers, and
the immediate and day-after recall were objective measures
quantifying the impact of ad insertion on short-term (imme-
diate) and long-term (day-after) memorability of the VPS-
embedded ads. Specifically, we measured the proportion of
(i) inserted ads that were correctly recalled (Correct recall or
hit rate), (ii) inserted ads that were not recalled (Forgotten or
miss rate = 1− hit rate) and (iii) non-inserted ads incorrectly
recalled as seen (Incorrect recall or false alarm). For inserted
ads which were correctly recalled, we also assessed whether
viewers perceived them to be contextually (or emotionally)
relevant to the program content (i.e., whether the ad inser-
tions were perceived to be appropriate).

Upon viewing a VPS, each user was provided with a
representative visual frame from each of the 28 ads and
a sequence-specific response sheet to test ad recall and
impression concerning ad insertion quality. All recall and
insertion quality-related responses were acquired as binary
values. In addition to these objective measures, we defined
a second set of subjective user experience measures, and
asked users to provide ratings on a 0–4 Likert scale for the
questions below with 4 implying best and 0 denoting worst:

1. Were the advertisements uniformly distributed
across the video program?

2. Did the inserted advertisements blend well with the
program flow?

3. Whether the inserted ads matched with the sur-
rounding scenes with respect to content and mood?

4. What was the overall VPS viewing experience?

Each participant filled the recall and experience-related
questionnaires immediately after watching each VPS. View-
ers also filled in the day-after recall questionnaire, a day
after completing the experiment.

6.4 User study results

As mentioned previously, program video scenes were as-
signed asl, val scores manually by three experts, while the
content-centric CNN (denoted as ‘Content’ hereon), EEG
and Manual methods were employed to estimate affective
scores for ads. The overall quality of the CAVVA-generated
VPS is influenced by the affective ratings assigned to both
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Immediate Recall Day-after recall User Experience
Fig. 4. Summary of user study results in terms of recall and user experience-related measures. Error bars denote standard error of mean.

the video scenes and ads. In this regard, we hypothesized
that better ad affect estimation would result in optimized ad
insertions maximizing brand recall and viewing experience.

Firstly, we examined if there were any similarities in the
ad asl and val scores estimated by the Content, EEG and
Manual approaches in terms of Pearson correlations. We
found that (1) there was significant and positive correlation
between asl scores generated by the Manual and EEG ap-
proaches (ρ = 0.55, p < 0.005), while asl scores computed
via the Manual and Content methods (ρ = 0.13, n.s.) as
well as via Content and EEG (ρ = −0.22, n.s.) were largely
uncorrelated. A similar pattern was noted for val scores
with a highly positive and significant correlation observed
between Manual and EEG (ρ = 0.80, p < 0.000001), while
the Content–Manual (ρ = 0.33, p = 0.08) and the Content–
EEG (ρ = 0.19, n.s.) scores showed an insignifcant positive
correlation. These results are indicative of the fact that
neural responses, which represent an implicit manifesta-
tion of emotional perception/expression, best reflect explicit
affective impressions reported by humans. It is therefore
unsurprising that a large number of recent affect prediction
approaches [14]–[16], [57] have employed neural sensing as
one of the modalities incorporating emotional information.

Based on the user responses, we computed the mean
proportions for correct recall, ad forgottenness, incorrect
recall and good insertions immediately and a day after the
experiment. Similarly, subjective experience scores were also
collated for the three VPS generation schemes. Fig. 4 sum-
marizes the response results.

A key measure indicative of a successful advertising
strategy is high brand recall [1], [4], [26], and the immediate
and day-after recall rates observed with the three ad affect
estimation methods are presented in Fig. 4 (left),(middle). A
surprising result observed from Fig. 4 (left) and (middle) is
that ads from the content and EEG-based VPSs are better
recalled (or less forgotten) than manual-based. Content-
based ad insertions were best recalled both immediately
and the day-after, even though recall rates for the three ad-
insertion approaches were not statistically different. Given
the extensive literature connecting affective attributes and
memorability, we examined if any such relationships could
be inferred from the user study. Overall, we found a signifi-
cant and positive correlation between ad val rating and recall
(ρ = 0.44, p < 0.05) consistent with prior findings [9], in
addition to about 2

3 rds of the VPS ads having positive val.
Ad recall rate was much worse for the day-after condition

with a high proportion of ads being forgotten. Also, the
proportion of incorrectly recalled ads was minimal in both
the immediate and day-after conditions. Some discernible

differences were observed in the proportion of good insertion
impressions for the three methods– we remark here that ad
recall and viewing experience are not necessarily positively
correlated (some ads may be memorable simply because
they disrupt viewing experience); however, embedding ads
at optimal temporal locations can enhance both ad recall
and viewing experience. Post-hoc independent and right-
tailed t-tests revealed that the proportion of immediate
’good insertion’ impressions was maginally higher for EEG
as compared to manual (t34 = 1.337, p = 0.095).

A number of significant differences were nevertheless
observed with respect to subjective user impressions of
the VPSs generated via the three ad insertion methods (4
(right)). The EEG-based mechanism scored highest for all
the considered criteria. Specifically, uniform insertion scores
were marginally higher for EEG with respect to manual
(t34 = 1.5646, p = 0.063). A one-way balanced ANOVA
on ad relevance scores revealed the significant effect of the
ad-insertion strategy (p < 0.05). Post-hoc t-tests further
revealed that EEG-based ad relevance was significantly
higher than manual (t34 = 2.3785, p < 0.05) or content-
based (t34 = 2.1893, p < 0.05). EEG-based VPSs were
also found to have the highest viewing experience scores,
which were significantly higher than manual-based VPSs
(t34 = 1.7033, p < 0.05). No differences were noted regard-
ing how the inserted ads blended with the program flow.

7 DISCUSSION

Even though ads routinely employ emotions to attract
viewer attention and convey an effective message, very few
works predict ad emotions. Our work is the first elaborate
attempt to (a) perform AR on video ads, and (b) demonstrate
via a user study that improved ad AR enables optimized ad
insertion onto streamed video, as measured in terms of brand
recall and viewing experience.

We firstly show that a curative set of 100 diverse ads can
coherently evoke emotions across disparate users. The expert
and novice annotator group concurred substantially on the asl
and val ratings for the chosen ads, as noted from Cohen’s
κ scores quantifying inter-rater agreement. A scatter plot
of the mean annotator asl, val ratings resembles a close-to-
uniform distribution as envisioned by the experts. The asl-
val ratings were also uncorrelated, conveying the relative
independence of these affective dimensions.

We then evaluate the efficacy of content and user-centric
techniques for ad AR. At the outset, it needs to be stressed
that content and user-centered cues encode complementary
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emotional information. While content-centric methods ex-
amine audiovisual content for extracting emotion descrip-
tors, they are typically limited in their ability to encode
context which is crucial for conveying emotions. Context
may induce in the viewer an emotion very different from
expectation based on content, and therefore we hypothe-
sized that examining user cues could be more effective as
evidenced by many of the recent AR approaches.

While CNNs have been previously used for video and
audio-based AR [21], [58] on short snippets, we attempt
CNN-based AR for full-length ads, some of which are over a
minute long. Our content-centered AR experiments confirm
that: (1) The proposed fc7 audio and visual CNN descriptors
better predict val, and F1-scores reveal that video features
are better at encoding emotions than spectrograms; (2) Mul-
timodal methods generally achieve comparable or better
AR than unimodal ones, and the fused (A+V) fc7 features
produce substantially better results than audiovisual Han
features for val; Probabilistic decision fusion achieves su-
perior results with respect to feature fusion for asl, but
inferior results for val. Conversely, EEG-based AR exper-
iments reveal that (1) EEG features achieve substantially
better AR than audiovisual descriptors; (2) The three-layer
CNN classifier outperforms shallow classifiers trained on
EEG data, and (3) Very comparable F1-scores are achieved
with CNNs on both raw (or noisy) and clean EEG data, even
though EEG data cleaning benefits shallow classifiers.

Some empirical trends are however unclear, notably the
performance of multimodal vs. unimodal methods. Observ-
ing Tables 3 and 5, multimodal cues appear to elicit better
AR performance than unimodal ones in some cases– e.g.,
(A+V) DF in Table 3 performs better than audio fc7 or
video fc7 for asl classification. Likewise in Table 5, some
combinations of content+user cues outperform individual
counterparts. However, feature/classifier fusion routinely
produces results inferior to the unimodal cases. These re-
sults motivate the need for better fusion strategies.

AR experiments nevertheless unambigously confirm
that ad emotions are better conveyed by user cues, which
are inherently modulated by context [9] than content cues.
Content-centric AR results over multiple temporal windows
reveal that ad contents coherently reflect val labels over
time, but not asl labels. There are two possible explanations:
(a) Many studies have noted that user impressions of stim-
ulus val are more stable over time than asl; also audiovisual
ads are routinely designed to convey surprise/shock, and
are hence likely to exhibit significant changes over time.
(b) Given these content changes, the use of a single asl
label over the entire ad duration may be inappropriate, and
seeking to dynamically estimate asl levels could be more
apt. Conversely, EEG-based AR results (Table 4) show only
a minor deviation between the F30 and L30 conditions even
for asl (lower F1s for the L10 condition can be attributed to
fewer training data) suggesting that users grasp the general
mood of ads fairly quickly and consistently.

General remarks regarding experiments include the fol-
lowing. Cumulatively, our AR results convey that the mini-
mal impact of model overfitting– small variations in F1 are
noted across the 50 runs in the ’All’ condition for content-
centric and over all conditions for user-centered AR. Among
classifiers, RBF SVM consistently produces the best results

among single-task classifiers, implying that both audiovi-
sual and EEG features may not be trivially linearly separable
in their respective feature spaces. However, the fact that the
linear multi-task learning classifier achieves close-to-ceiling
performance suggests that exploiting commonalities among
emotionally similar ads greatly benefits AR.

We then proceeded to check if improved emotion esti-
mation enabled optimized ad insertion for a computational
advertising application. Based on data compiled from 18
users, we observe that video program sequences generated
via audiovisual and EEG-based affective scores are more
effective in terms of ad recall and eliciting a better viewing
experience than manually generated VPSs. Specifically, ads
from content-based VPSs are recalled marginally better,
both in the immediate and day-after conditions. EEG-based
VPSs nevertheless received the highest scores for different
attributes relating to viewing experience. Ads in EEG-based
VPSs are perceived to be (a) more uniformly distributed,
and (b) more emotionally matched (relevant) with the pre-
ceding and succeeding video scenes. Finally, EEG-based
VPSs are also found to produce the best viewing experience.

The surprising finding that the audiovisual and EEG-
based VPSs are superior to manually generated VPSs can be
explained as follows. Despite correlation analyses revealing
that the general trends of the EEG and manual-based affec-
tive score estimates are similar, user study results reveal that
the EEG and content-based CNNs generated more accurate
scores, which enabled better video scene–ad matching. Au-
diovisual and EEG-based asl and val scores are estimated
via CNN models, and deep CNNs have recently outper-
formed humans in tasks such as object recognition [59]
and facial expression recognition [60] due to their ability to
capture fine details from data. The CAVVA framework [4]
comprises two components– one for selecting ad insertion
points, and another for selecting the ads themselves. Asl
scores only play a role in the choice of insertion points,
whereas val scores influence both selections. As the EEG-
based CNN performs best for both asl and val recognition,
it also enables the most optimal ad insertions, and conse-
quently the best viewing experience. Also, one should note
that humans are better at rating attributes in relative than
absolute terms [61], [62]; this possibly explains why the ad-
level asl and val scores obtained from per-frame manual
ratings may not be accurate.

This study has multiple limitations in terms of the al-
gorithms and hardware employed for ad AR. In terms of
algorithms, given the limited available data we only explore
CNNs which do not encode temporal data dependencies.
Given that emotion perception and expression evolves over
time, modeling time dependencies for content and user-
centric AR should be beneficial. In this respect, recurrent
neural networks (RNNs) have shown much promise for
emotion [63] and mental state [64] recognition. Likewise,
due to the paucity of large-scale, labeled training datasets in
the AR domain, Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs) provide an avenue
to generate synthetic labeled data. Also, power spectral
density analysis could be employed for EEG-based AR.

In terms of hardware, Emotiv headsets, which are wear-
able and enable naturalistic user responses are used for
recording EEG data. While the EEG signal quality of gaming
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headsets is inferior with respect to lab-grade EEG equip-
ment, recent AR studies [16], [57] have resorted to wearable
sensors since they enable user data capture at scale. Facial
emotions [29] have also been successfully employed for
large-scale AR. With ever-falling sensor costs, one envisages
a combination of facial emotion capture, neural sensing and
eye-tracking to be employed in crowdsourced studies.

8 CONCLUSION

The presented study (a) examines AR on a curated set
of 100 ads, and (b) demonstrates that improved ad AR
enables better ad insertion onto streamed video via a user
study. As part of future work, multi-task feature selection
to determine the best emotion predictors [65] and deep
multi-task learning [66] will be explored for optimized ad
AR. In addition, we will also work on efficient fusion-based
approaches and addressing aforementioned limitations.
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