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ABSTRACT

The complexity of an image tells many aspects of the image
content and is an important factor in the selection of source
material for testing various image processing methods. We
explore objective measures of complexity that are based on
compression. We show that spatial information (SI) measures
strongly correlate with compression-based complexity mea-
sures. Among the commonly used SI measures, the mean of
the edge magnitude is shown to be the best predictor. More-
over, we find that compression-based complexity of an image
normally increases with decreasing resolution.

Index Terms— Image quality, image compression, Kol-
mogorov complexity, SI, resolution

1. INTRODUCTION

The knowledge of image complexity is useful in many appli-
cations. It can be used to determine the compression level and
bandwidth allocation, as an image with low complexity can be
compressed more easily and requires less bandwidth than an
image with high complexity [1]. Moreover, complexity-based
similarity measures are used in many high-level image un-
derstanding and recognition problems, such as content-based
image retrieval (CBIR) [2], image clustering and classifica-
tion [3], as well as aesthetic classification [4, 5]. Last butnot
least, image complexity is an important factor in the designof
image and video quality databases [6].

Yet the definition of the complexity of an image is not as
straightforward as it seems. Researchers from various fields
have proposed different measures to estimate image complex-
ity. In [1, 7, 8], observers were asked to rate the perceived
complexity of images. Despite a high correlation with hu-
man perception [9], such subjective rating scores are costly to
obtain, less consistent, and not necessarily relevant, as subjec-
tive image complexity may not be the same as objective com-
plexity. Thus, objective measures of image complexity are
much needed. In the literature, fuzzy approaches [10] and in-
dependent component analysis (ICA) [2] have been proposed
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to determine the complexity of an image. Compression-based
image complexity, which originates from the notion of Kol-
mogorov complexity [2,3,11], has attracted increasing atten-
tion due to its strong information theoretic justification.In
this paper, we review existing and propose new compression-
based measures of image complexity.

Oftentimes, engineers would like to know the complex-
ity of an image before compressing it so as to determine
the optimal tradeoff between image compression and im-
age quality. One way to get such information, which has
to be extremely fast to compute, is to measure the spatial
information (SI) contained in the image. In this paper, we
examine the relationship between common SI measures and
compression-based image complexity measures, which to
our knowledge has not been done before, thus enabling re-
searchers to make an informed decision on which SI measures
to use. We consider only grayscale images in order to elimi-
nate influences from color. Finally, we examine the effect of
resolution change on image complexity and SI, showing that
both normally increase as resolution decreases. We also offer
spatial-frequency domain explanations for this behavior.

The rest of the paper is organized as follows. Section 2
explains the concept of Kolmogorov complexity, introduces
existing compression-based measures of image complexity,
proposes new measures, and studies their correlations. Sec-
tion 3 defines the commonly used SI measures and investi-
gates their correlation with image complexity. Section 4 ex-
amines the resolution dependence of image complexity us-
ing spatial-frequency analysis. Section 5 concludes the paper
with possible directions to future work.

2. COMPRESSION-BASED IMAGE COMPLEXITY

In Shannon’s information theory, entropy is used to measure
the amount of information in a set of symbols such as an
image [12]. However, it is not a good measure for image
complexity, because entropy is calculated without consider-
ing spatial structures. For instance, the two binary imagesin
Fig. 1 both have an entropy of 1, but image 1(b) is clearly
much more complex than 1(a).

Hence, people turn to algorithmic information theory for
a suitable complexity measure [11, 13]. Kolmogorov defines
the complexity of an object to be the length of the shortest
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Fig. 1: Two images with the same entropy of 1.

binary computer program that describes it [12]. However, the
Kolmogorov complexity is not computable. Thus, we have
to approximate Kolmogorov complexity with a standard real-
world compressor [11].

We first define the compression ratio as follows:

CR =
s(I)

s(C(I))
, (1)

wheres(I) is the file size of the uncompressed (grayscale) im-
ageI, ands(C(I)) is the file size of the output of compressor
C.

In the development of complexity-based similarity met-
rics [2, 3, 11], lossless compression is used as a complexity-
based feature. Here, we define the first image complexity (IC)
measure as the inverse of the lossless compression ratio of the
image:

ICLS =
1

CR
, (2)

where ‘LS’ stands for lossless.
In computing aesthetics [4,5], lossy compression and dis-

tortion are used to define image complexity:

ICRMSE(q) =
RMSE(q)

CR(q)
, (3)

whereRMSE is the root-mean-square error between the
original image and the lossy compressed image, andq is a
parameter that controls the amount of quantization in lossy
compression; for example,q ∈ {1, 2, . . . , 100} in JPEG and
JPEG2000 compression, where higherq values correspond to
lighter compression and better image quality.

We propose a third compression-based definition, which
is also based on lossy compression, but without the error term,
because the compression ratio by itself indicates how difficult
it is to compress an image:

ICLY (q) =
1

CR(q)
, (4)

where ‘LY ’ stands for lossy compression.

Both complexity measuresICRMSE andICLY are func-
tions of the compression quality factorq. As shown in Fig. 2,
when applied to an image that is compressed using JPEG or
JPEG2000,ICLY is a monotonically increasing function ofq,
while ICRMSE is not a monotonic function, becauseRMSE

andCR increase differently asq decreases.
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Fig. 2: Complexity measures as a function of compression
level q for JPEG and JPEG2000 compression.

We would also like to know the correlation among differ-
ent complexity measures at different quality factorsq. To test
this, we use the reference images of the CSIQ database [14],
comprising 30 uncompressed images from five categories,
namely Animals, Landscape, People, Plants, and Urban. The
images are of size512×512 and were converted to grayscale
to eliminate the effect of color on compression. We test
q = 25 and q = 75 to cover different compression levels.
The result for JPEG-based complexity measures is shown in
Table 1. The correlation between any pair of complexity mea-
sures is above 0.91. Moreover, the correlations between pairs
(ICRMSE(25), ICRMSE(75)) and (ICLY (25), ICLY (75))
are both above 0.98. We observe the same high correlations
between other quality settings as well.

Table 1: Correlation among different complexity measures.

IC LS IC RMSE (25) IC RMSE (75) IC LY (25) IC LY (75)

IC LS 1

IC RMSE (25) 0.9213 1

IC RMSE (75) 0.9167 0.9817 1

IC LY (25) 0.9176 0.9795 0.9396 1

IC LY (75) 0.9501 0.9827 0.9685 0.9885 1

As mentioned earlier, Kolmogorov complexity is not
computable, which makes complexity measures compressor-
dependent. Nevertheless, we expect to see a high correlation



between complexity measures based on different compres-
sion methods. We test this hypothesis using both JPEG and
JPEG2000 compression for all three complexity measures
(JPEG-LS is used for JPEG lossless compression). The re-
sults in Fig. 3 show a near-perfect match between them. The
corresponding correlation coefficients are0.9912, 0.9877,
and 0.9509 for ICLS , ICLY , and ICRMSE respectively
(the last being somewhat lower mainly due to the slightly
non-linear relationship).
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Fig. 3: Correlation between JPEG and JPEG2000 complexity
measures.

3. SPATIAL INFORMATION

Spatial information (SI) is an indicator of edge energy [15]
and has been commonly used as the basis for estimating im-
age complexity. Letsh andsv denote gray-scale images fil-
tered with horizontal and vertical Sobel kernels, respectively.

SIr =
√

s2
h
+ s2v (5)

represents the magnitude of spatial information at every pixel.
The SI measures commonly used to characterize image com-
plexity are mean, root-mean-square, and standard deviation of
theSIr values across all the pixels in the image [15]. These
are mathematically expressed as:

SImean=
1

P

∑

SIr, (6)

SIrms =

√

1

P

∑

SI2r , and (7)

SIstdev=

√

1

P

∑

SI2r − SI2mean, (8)

whereP is the number of pixels in the image. These SI mea-
sures are fast to compute and used to predict the complexity
of images.

We examine the correlations between each SI measure
and JPEG-based image complexity measures, using again the
30 reference images from the CSIQ image database. Fig. 4
illustrates thatSImean is a significantly better predictor than
the other two SI measures, regardless of the complexity mea-
sures considered. This is further quantified with the correla-
tion coefficients shown in Table 2, which showsSImean to be
better thanSIrms, andSIstdev being the worst by far in pre-
dicting image complexity. The same trends are observed for
JPEG2000-based complexity measures as well as other com-
pression levels.

Table 2: Correlation coefficients between SI measures and
JPEG-based complexity measures.

IC LS IC RMSE (75) IC LY (75)

SI mean 0.9104 0.9352 0.9720

SI rms 0.8454 0.9183 0.9368

SI stdev 0.7197 0.8341 0.8350

SI measures are also relatively robust to compression.
Fig. 5 shows SI as a function ofq for a typical image from the
CSIQ database under JPEG compression. All three SI mea-
sures exhibit very little variation across a wide range of com-
pression levels. In particular,SImeanis nearly constant except
for unusually heavy compression (q < 20). This behavior
makes SI well suited for image activity characterization and
content classification in image and video quality assessment
applications, and a number of video quality metrics use SI or
closely related measures for this purpose [16–18].
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Fig. 5: SI measures as a function of compression levelq for
JPEG compression.
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Fig. 4: SI measures versus various JPEG-based complexity measures.

4. EFFECTS OF RESOLUTION CHANGES

The majority of the images in the CSIQ database exhibit
higher complexity as the image resolution decreases. To fur-
ther confirm this trend for heavy reductions, we also test on
images obtained from the Digital Photography Review web
site (http://www.dpreview.com/). These images were taken
with Nikon D600/D800 and Canon EOS 5D cameras and
are of very high quality and resolution (21-36 megapixels).
We reduce the resolution of the images by different integer
factors (a low pass filter is applied prior to subsampling to
prevent aliasing). The result for one high-resolution image,
7(a), is shown in Fig. 6. This negative correlation of complex-
ity measures and spatial information with image resolution
can be observed for the majority of our test images.
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Fig. 6: Complexity measures at different image resolutions.

For most natural images, energy is concentrated in the
low-frequency components comprised of homogeneous im-

age patches. Intuitively, as image resolution decreases, large
patches become smaller and small patches become localized
features, such as lines, edges or corners, and so this creation
of new localized features surpasses the high frequency loss
from reducing resolution of existing localized features.

However, we also observed a few images with the oppo-
site behavior, i.e. lower complexity at reduced resolution, for
instance image 7(b). These images contain a relatively large
portion of fine-scaled localized features (fabric texturesin all
our examples), which are lost when the image is subsampled,
and the creation of new localized features is unable to make
up for that.

(a) (b)

Fig. 7: High resolution images: (a) negative correlation be-
tween complexity and resolution, (b) positive correlationbe-
tween complexity and resolution.

To support the aforementioned argument, we plot the ra-
dially averaged power spectrum (RAPS) for images 7(a) and
7(b). We also observe similar patterns in RAPS plots for
other test images. RAPS is a convenient way to visualize
direction-independent frequency energy in a 1-D plot and has
been used in rotation and scale invariant texture analysis [19].
In Fig. 8a, the RAPS for images with a negative correlation

http://www.dpreview.com/


between complexity and resolution has a nearly log linear de-
caying high frequency energy, which is indeed characteristic
of most natural images [20], whereas in Fig. 8b, there is a
sudden surge in high frequency energy, which would be lost
with resolution reduction and thus cause the complexity to
decrease.
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Fig. 8: Radially averaged power spectrum for two types of
images: (a) negative and (b) positive correlation between
complexity and resolution. The dash-dotted lines indicatethe
highest frequency at the respective resolutions.

5. CONCLUSION

This paper makes three main contributions.

1. We have studied three compression-based image com-
plexity measures, namelyICLS , ICRMSE(q), and
ICLY (q). Although these measures depend on the
specific image compressor used, we have demon-
strated nearly perfect correlations between JPEG and
JPEG2000-based complexity measures. We have also
shown that complexity measures generated by different
compression quality factorsq are highly correlated.
Moreover, there exists a strong correlation among
ICLS , ICRMSE(q), andICLY (q) for a given image
compressor and compression level.

2. We have evaluated the correlation between different
SI measures and complexity measures, showing that
SImean is the best predictor of image complexity
among the three SI measures considered. It is also
robust to image compression.

3. We have found a general trend between image com-
plexity and image resolution, i.e. image complexity
generally increases as image resolution decreases, ex-
cept for images with a large portion of fine-grained
textures.

We plan to extend this work to color images as well as
video, for which there is less agreement as to how complexity
can be estimated. The question is also how the contributions
of spatial, temporal, and color activity can be best be mea-
sured individually and combined.
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R. Sandoval-Rodrı́guez, “Image complexity measure: A
human criterion free approach,” inProc. Annual Meet-
ing of the North American Fuzzy Information Process-
ing Society (NAFIPS), June 2005, pp. 241–246.

[11] R. Cilibrasi and P. M. B. Vit́anyi, “Clustering by com-
pression,”IEEE Trans. Information Theory, vol. 51, pp.
1523–1545, 2005.

ftp://ftp.cs.wpi.edu/pub/techreports/pdf/06-19.pdf
ftp://ftp.cs.wpi.edu/pub/techreports/pdf/06-19.pdf


[12] T. M. Cover and J. A. Thomas,Elements of Information
Theory, Wiley-Interscience, 2nd edition, July 2006.

[13] M. Li, X. Chen, X. Li, B. Ma, and Paul M. B. Vit́anyi,
“The similarity metric,” IEEE Trans. Information The-
ory, pp. 863–872, 2003.

[14] E. C. Larson and D. M. Chandler, “Most apparent dis-
tortion: Full-reference image quality assessment and the
role of strategy,” J. Electronic Imaging, vol. 19, no. 1,
pp. 011006, 2010.

[15] ANSI T1.801.03, “Digital transport of one-way video
signals – parameters for objective performance assess-
ment,” American National Standards Institute, 1996.

[16] M. H. Pinson and S. Wolf, “A new standardized method
for objectively measuring video quality,”IEEE Trans.
Broadcasting, vol. 50, no. 3, pp. 312–322, 2004.

[17] U. Engelke, M. Kusuma, H.-J. Zepernick, and
M. Caldera, “Reduced-reference metric design for ob-

jective perceptual quality assessment in wireless imag-
ing,” Signal Processing: Image Communication, vol.
24, no. 7, pp. 525–547, 2009.

[18] J. Korhonen and J. You, “Improving objective video
quality assessment with content analysis,” inProc. In-
ternational Workshop on Video Processing and Quality
Metrics for Consumer Electronics (VPQM), Scottsdale,
AZ, 2010.

[19] X. Chu and K. L. Chan, “Rotation and scale invari-
ant texture analysis with tunable Gabor filter banks,” in
Proc. 3rd Pacific Rim Symposium on Advances in Image
and Video Technology, Tokyo, Japan, 2009, pp. 83–93.

[20] A. van der Schaaf and J. H. van Hateren, “Modelling the
power spectra of natural images: Statistics and informa-
tion,” Vision Research, vol. 36, no. 17, pp. 2759–2770,
1996.


	 Introduction
	 Compression-based image complexity
	 Spatial Information
	 Effects of Resolution Changes
	 Conclusion
	 References

