Pattern Recognition Letters
journal homepage: www.elsevier.com

A General Framework For Image Feature Matching Without Geometric Constraints

Jonas Toft Arnfred, Stefan Winkler*

Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign (UIUC), Singapore

ABSTRACT

Computer vision applications that involve the matching of local image features frequently use Ratio—
Match as introduced by Lowe and others, but is this really the optimal approach? We formalize the
theoretical foundation of Ratio-Match and propose a general framework encompassing Ratio-Match
and three other matching methods. Using this framework, we establish a theoretical performance rank-
ing in terms of precision and recall, proving that all three methods consistently outperform or equal
Ratio-Match. We confirm the theoretical results experimentally on over 3000 image pairs and show
that matching precision can be increased by up to 20 percentage-points without further assumptions
about the images we are using. These gains are achieved by making only a few key changes of the

Ratio-Match algorithm that do not affect computation times.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Matching image points is a crucial ingredient in almost all
computer vision applications that deal with sparse local image
features, such as image categorization (Bosch et al., 2008), im-
age stitching (Brown and Lowe, 2007), object detection (Zhang
et al.,, 2007), and near duplicate detection (Zhao and Ngo,
2009), to mention just a few examples. All of these rely on
accurately finding the correspondence(s) of a point on an object
in a query image given one or more target images that might
contain the same object. In many applications the target images
have undergone transformations with respect to the query im-
age; in stereo vision, the viewpoint is different, while in object
recognition and near duplicate detection both the lighting and
even the object itself may also be transformed.

In the literature two approaches to feature point matching
have been pursued and later merged, namely the geometric ap-
proach and the descriptor-centric approach.

In the purely geometric approach, feature points are matched
based on their location in the images. Scott and Longuet-
Higgins (1991) and Shapiro and Brady (1992) introduced the
use of spectral methods by deriving a coherent set of matches
from the eigenvalues of the correspondence matrix. Other ex-
amples of this approach include (Sclaroff and Pentland, 1995;
Carcassoni and Hancock, 2003).

The descriptor-centric approach on the other hand finds
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matches by pairing similar keypoints. The first examples of
this approach used the correlation of the raw image data im-
mediately surrounding the feature point (Deriche et al., 1994;
Baumberg, 2000) to calculate this similarity. Later algorithms
were enhanced by invariant feature descriptors, as first intro-
duced by Schmid and Mohr (1997) and later popularized by the
work of Lowe (2004) introducing SIFT and Bay et al. (2006)
introducing SURF.

A straightforward way of finding a set of correspondences
using only feature points is to apply a threshold to the similar-
ity measure of the feature vectors, accepting only correspon-
dences that score above a certain level of similarity (Szeliski,
2010). When we match images with the assumption that the
correspondence between two feature points will be unique, we
can further increase precision by only matching a feature point
to its nearest neighbor in terms of descriptor similarity. Instead
of thresholding based on similarity, Deriche et al. (1994) and
Baumberg (2000) proposed using the ratio of the similarity of
the best to second best correspondence of a given point to eval-
uate how unique it is. Their finding was later tested by several
independent teams, all concluding that thresholding based on
this ratio is generally superior to thresholding based on similar-
ity (Lowe, 2004; Mikolajczyk and Schmid, 2005; Moreels and
Perona, 2007; Rabin et al., 2009). Brown et al. (2005) extended
this “ratio-match” idea to deal with a set of images by using not
the ratio of the best and second best correspondence, but the
average ratio of the best and the second best correspondences
across a set of images. Rabin et al. (2009) tried to enhance
descriptor matching by looking at the statistical distribution of



local features in the matched images, and only return a match
when such a correspondence would not occur by mere chance.
Finally, a precursor of the algorithms discussed in this paper
was introduced by the authors as Mirror-Match, which makes
use of the feature points in both images to decide if a match is
valid (Arnfred et al., 2013).

A plethora of hybrid solutions have combined descriptor
matching with various geometric constraints to improve match-
ing. These constraints are based on assumptions regarding
the transformation between query and target images. At the
stricter end we have epipolar constraints, assuming that im-
ages can be tied by a homography (Torr and Zisserman, 2000;
Chum and Matas, 2005), and angular constraints, assuming cor-
respondences are angled similarly (Kim et al., 2008; Schmid
and Mohr, 1997). Often these approaches are made computa-
tionally feasible by modeling feature correspondences as an in-
stance of graph matching, where each feature is a vertex, and
edge values correspond to a geometric relation between two
features. Approximate graph matching algorithms can then be
used to efficiently establish an isomorphism between the feature
graphs of two images (Leordeanu and Hebert, 2005; Torresani
et al., 2008; Yarkony et al., 2010; Yuan et al., 2012). Others de-
fine image regions and reject or accept correspondences based
on the regions they connect (Cho et al., 2009; Wu et al., 2011).

Any matching method relying on geometric constraints is
limited by inherent assumptions about the geometric relation-
ship between the two images. Broad assumptions such as the
epipolar constraint only apply in simple image transformations.
For more complex transformations we need models suitable
for each particular case, which restricts them to the subset of
images that fit the model. Transformations from one scene
to another often feature a change in perspective, background,
and sometimes variations within the object itself: a person can
change pose, a car model can have different configurations, a
flower can bloom etc. When matching these instances we are
forced to either create a sophisticated model that represents the
variables of transformation within the object, or alternatively
find correspondences using an algorithm with no inherent geo-
metric assumptions. Besides, any geometric method acts as a
filter on a given set of correspondences. Therefore, if the initial
set of purely descriptor-based matches contains fewer incorrect
correspondences, the final set can be calculated faster and more
accurately.

The methods we propose in this paper are designed to be free
from assumptions about image geometry. They extend and im-
prove on Ratio-Match (Lowe, 2004) and the authors’ Mirror-
Match (Arnfred et al., 2013) by generalizing both algorithms
to a framework of matching methods. We go on to formally
establish a ranking based on how different methods within the
framework compare in terms of precision and recall. Our ex-
perimental evaluations confirm the theoretical results and show
that Ratio-Match is generally a sub-optimal choice as a match-
ing algorithm.

In our previous paper (Arnfred et al., 2013), we introduced
Mirror-Match and Mirror-Match with Clustering, two algo-
rithms that outperform the state of the art. The novel contribu-
tions of the present paper consist of presenting these algorithms
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together with several related existing algorithms in a general
and comprehensive framework. We further develop the theoret-
ical foundations for comparing the algorithms and use these to
formally prove a ranking in terms of performance for the differ-
ent algorithms. This also enables us to understand why Mirror-
Match performs better than Ratio-Match in the first place. In
addition we benchmark all algorithms within the framework ex-
tensively on a much larger dataset containing over 3000 image
pairs.

The paper is organized as follows. Section 2 introduces the
original Ratio-Match and extends it to introduce the proposed
framework. Section 3 compares the various methods of the
framework theoretically. Section 4 presents an experimental
evaluation and discusses the results obtained. Section 5 con-
cludes the paper.

2. Matching Framework

2.1. Definitions

The proposed framework is inspired by Ratio-Match as in-
troduced by Deriche et al. (1994) and later used by Baumberg
(2000) and Lowe (2004). Ratio-Match is motivated by the ob-
servation that nearest-neighbor feature matching is not neces-
sarily the best strategy (Lowe, 2004; Mikolajczyk and Schmid,
2005). The distance between the feature descriptors of two
nearest neighbors might tell us on a global level how much they
resemble each other, but it does not tell us if other feature points
are equally similar. Ratio-Match makes use of the ratio between
the nearest and second nearest neighbor as a heuristic to deter-
mine the confidence of the match. Matches are returned only if
this ratio is lower than a given threshold 7, filtering out feature
points that are ambiguous because others match almost equally
well.

The underlying assumption in Ratio-Match is that the point
we seek to match in the query image has only one true corre-
spondence in a given target image or no matches at all. In both
cases we can infer that the second nearest neighbor in the target
image is not a true correspondence. We consider the distance
between the second nearest neighbor and the feature point as
the baseline. It tells us how similar the descriptors of two fea-
ture points can be when they are not a true correspondence.
Some feature points might have very unique descriptors with
large distances to false correspondences, while others may be
generic with plenty of similar points. Knowing the baseline for
all features allows us to be lenient in the first case and cautious
in the second. In practice Ratio-Match scores a match by divid-
ing the distance to the nearest neighbor with the distance to the
second nearest neighbor (the baseline) to estimate how distinct
the correspondence is from a false match.

In what follows we will use the following nomenclature:

e Let f, be a feature point in the query image.

e Let ¥ be a set of features. ¥, denotes all features from the
target image.

e Let7 € [0...1] be a threshold used to decide whether to
keep a match.
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Fig. 1: Flow chart of the feature matching framework. 7 is the ratio threshold, and d(x, y) is the distance between two feature descriptors x and y.

o Let the proposed match be the nearest neighbor of a query
feature f, picked from a set of feature points that we call
the proposal set ¥,, which does not contain the query fea-
ture.

Let the baseline match be the nearest neighbor of the query
feature f; picked from a set of feature points that we call
the baseline set Fp, which contains neither the proposed
match nor the query feature. In Ratio-Match the baseline
match is the second nearest neighbor.

2.2. Framework of Matching Methods

We can generalize Ratio-Match by expanding on the idea of
baseline and proposal sets. With Ratio-Match these two sets
are created from features in the target image, but this is not the
only option. If we use the features in the query image as well as
the combined features of both images, we end up with six pos-
sible permutations of a Ratio-Match-like algorithm. We illus-
trate these variants in Figure 2 and will go on to prove theoret-
ically and demonstrate empirically that Ratio-Match is among
the least performant of the pack.

Proposal Set Baseline Set
Target feature @ Self-Match o A
Query feature A Self-Match-Ext oA A
Target image  Query image Ratio-Match © ©
o o r 4 Ratio-Match-Ext oA o
o oo o AAV z Both-Match o oA
Mirror-Match oA oA

Fig. 2: Graphical representation of the baseline set and proposal set for different
methods in the proposed framework.

The algorithms Ratio-Match, Self-Match and Both-Match all
find the best match to a given query feature only in the target
image. They differ by the feature set used as the baseline set.
While Ratio-Match uses features from the target image, Self-
Match draws the baseline set from the query image. Finally
Both-Match uses the conjunction of features from both images.

Each of these three algorithms has an ‘extended’ case where
the proposal set is replaced with the conjunction of features
from both the target image and the query image. The extended

version of Self-Match is Self-Match-Ext, and the extended ver-
sion of Ratio-Match is Ratio-Match-Ext. Finally we call the
extended version of Both-Match “Mirror-Match” because we
originally introduced it under this name (Arnfred et al., 2013).
We will not discuss the Self-Match-Ext and Both-Match vari-
ants in this paper since we prove them to be equivalent with
Self-Match and Mirror-Match respectively in Section 3.

Figure 1 shows the flow chart of the generalized matching
framework when proposal set and baseline set are defined ac-
cording to Figure 2. Algorithm 1 illustrates in more detail how
the framework can be implemented.

Algorithm 1 Generalized matching algorithm for two images.

Require: 1,1, : images, 7 € [0, 1]
Fq = get_features(l,)
F: = get_features(l,)
}Tproposalfall = get_proposaljeatures(ﬁ, 7_:)
Fbaseline-anl = get_baseline_ features(F,, F;)
M=o
for all f; € 7, do
'7:1; = '};Jropuwl—all \ {fq}
fp < getNearestNeighbor(f,, F,)
ﬂ = ‘)Tbaxelinefall \ {fq? f])}
[y < getNearestNeighbor(f,, Fp)
r « distance(f,, f,)/distance(f,, f;)
if (r <7) A (f, € 1) then
M= MU (f,. f,)
end if
end for
return M

The main distinguishing factor between the algorithms in the
framework is the final ratio between the distance of the two
nearest neighbors of a query feature, which determines if we
keep or discard a match.

We can define a calculation of this ratio that is common to all
algorithms in the framework, which allows us to compare the
algorithms theoretically. To do so, we introduce the uniqueness
ratio r, based on the concept of a nearest neighbor.

Given a feature f; and a set of features ¥, the nearest neigh-



bor of f; in ¥ is calculated as follows:

argmind(f;, f}).
fieF

Here, d(f;, f;) is the distance between feature descriptors. With
SIFT and SURF this is the Euclidean distance of the fea-
ture vectors (Lowe, 2004; Bay et al., 2006), whereas BRIEF,
BRISK, and FREAK use the Hamming distance (Leutenegger
et al., 2011; Calonder et al., 2010; Alahi et al., 2012).

Let f, € ¥, and f;, € ¥, be the nearest neighbors of a feature
Jq in ¥, and Fp,. The uniqueness ratio is defined as follows:

r= r(fqa Tpa Fb)
d(fy, fp)

S d(fy fo)

Referring again to Figure 1, for some methods it is possible
that the proposed match is a feature from the query image, in
which case we discard the match as a false correspondence. It
also happens that we encounter correspondences with » > 1,
in which case the match is also discarded. Take for example
the case of Self-Match where we might find that the nearest
neighbor of a feature in the target image is further from the
query feature than the nearest neighbor in the query image. In
this case the match is discarded.

3. Proofs of Algorithm Performance

3.1. Assumptions

Under the following three assumptions, which largely re-
flect the performance of matching feature points in practice,
and which will be discussed in more detail in Section 3.6, we
can theoretically compare the performance of the different al-
gorithms shown in Figure 1:

1. For any point in the query image there is at most one real
correspondence in the target image and no real correspon-
dence in the query image (as assumed by Ratio-Match).

2. The distance between two feature descriptors within the
query image is larger than their distance to a real corre-
spondence in the target image. More precisely, given f, a
feature from the query image for which a real correspon-
dence, fiacn, €Xists in the target image, we assume that
vfl € 7—-61 : d(fq’ fmatch) < d(fq’ ft)

3. For a set of query features ¥, with true correspondences
in the target image, the distribution of uniqueness ratios
using ¥ as the baseline set is similar to using ¥, since the
two images are bound to share part of the same scene in
the case of true correspondences.

The performance in terms of precision and recall of any al-
gorithm in the proposed framework is uniquely identified by
the uniqueness ratio r. To show this, let K be the number of
possible true correspondences between query and target image.
Precision and recall are defined as:

. #Correct
Precision =
#Correct + #Incorrect
#C t
Recall = =20t
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Given feature f, € ¥, as the nearest neighbor of some
query feature f, € ¥,, we define the set of features ¥, as
{ Jfq € ¥4 | f, is a true correspondence of fq} and Frase as Fy \
Firue- We can then define the number of correct and incorrect
matches as follows:

1 ifr(f,, Fpa Fo) < 7

keep_match(/y) = { 0 otherwise

#Correct = Z keep_match(f,)
Fa€F true

#Incorrect = Z keep_match(f;)
J4€T taise

If r is identical across two matching methods for every query
feature f,, they return identical results.

3.2. Ratio-Match and Ratio-Match-Ext

Based on the above assumptions we prove that Ratio-Match-
Ext is equal to or better than Ratio-Match in terms of both pre-
cision and recall. Consider the nearest neighbor f,, of a query
feature f; and the two cases where we have either f, € ¥, or
fr €Fr

For f, € #; the uniqueness ratio of Ratio-Match-Ext is:

r= r(fq’ 7:[9’ Fb)
=1(fy. Fg U Fr. F0)
=1(fg. F1, Fo).

Since F, = ¥, for Ratio-Match, the two algorithms behave
identically when the nearest neighbor is found in the target im-
age.

For f, € ¥4, Ratio-Match gives us the following ratio:

r= r(fq7 7__[7$ 7:}7)
= r(f(p ‘7:t’ 7:1)

That is, Ratio-Match calculates the ratio based on the two near-
est correspondences in the target image. Ratio-Match-Ext on
the other hand does not return any correspondence, because the
nearest neighbor is in the query image. Since query features
with a nearest neighbor in the query image are false correspon-
dences per assumption #1 and #2, this proves that Ratio-Match-
Ext has superior precision to Ratio-Match while maintaining
equal recall.

3.3. Mirror-Match and Ratio-Match-Ext

Next we show that Mirror-Match is equal or better than
Ratio-Match-Ext in terms of precision and recall. Consider as
before the nearest neighbor f,, of a query feature f,. When f,
resides in the query image, both algorithms behave alike and
discard the match. However, consider the uniqueness ratio of
Mirror-Match for the case where f), resides in the target image:

r= r(fq» 7:ps Fb)

=1(fs. Fp. Fg U FD)
= max(r(fq, 7__[77 7__t)7 r(fq7 7:,'7’ 7:‘]))



For a true correspondence, the uniqueness ratio using 7, as a
baseline is distributed similarly to the ratio when using 7, ac-
cording to assumption #3. In this case the algorithm performs
like Ratio-Match-Ext. However, for a false correspondence
with a baseline match in the query image which is closer than
the baseline match in the target image, Mirror-Match will re-
turn a worse uniqueness ratio. This in turns means that Mirror-
Match is equal to or better than Ratio-Match-Ext in terms of
precision while maintaining equal recall.

3.4. Self-Match and Self-Match-Ext

Using a similar procedure we can prove the equivalence be-
tween Self-Match and Self-Match-Ext. We look at the nearest
neighbor f,, of every query feature f, and consider the two
cases of f,, € ¥, and f,, € ;.

For f,, € 7, the uniqueness ratio of Self-Match-Ext is:

r=1(fg, Fp.Fp)
=1(fg» Fq U F1, Fp)
= 1(fg F1. Fp)-

Since ¥, = F; for Self-Match, the two algorithms behave iden-
tically when the nearest neighbor is found in the target image.
For f,, € ¥4 we know that the best match for the query fea-
ture is in the query image. Since neither algorithm returns a
correspondence within the same image, they also behave identi-
cally for this case. This proves that for any set of query features
Self-Match returns the same matches as Self-Match-Ext.

3.5. Both-Match and Mirror-Match

The proof of the equivalence between Both-Match and
Mirror-Match is almost identical to the one for Self-Match and
Self-Match-Ext. We look at the nearest neighbor f,, of every
query feature f, and consider the two cases of f,, € ¥, and
fl’"’l € 7.:["

For f,, € F; the uniqueness ratio of Mirror-Match is:

r=1(fg. Fp.Fp)
= r(fq’?-q U /Ctv 7__}7)
=1(fg 1. Fp)-

Since ¥, = F; for Both-Match, the two algorithms behave iden-
tically when the nearest neighbor is found in the target image.
For f,, € ¥4 we know that the best match for the query fea-
ture is in the query image. Since neither algorithm returns a
correspondence within the same image, they also behave identi-
cally for this case. This proves that for any set of query features
Both-Match returns the same matches as Mirror-Match.

3.6. Discussion

We have thus proven that — based on assumptions #1-3 —
the algorithms in the framework behave as follows in terms of
matching precision:

Ratio-Match < Ratio-Match-Ext < Mirror-Match
Self-Match = Self-Match-Ext
Both-Match = Mirror-Match
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Self-Match is most closely related to Ratio-Match in that both
the baseline set and the proposal set are created based on only
one image. While the proposal set for both algorithms is based
on the target image, Self-Match uses the query image for the
baseline set, whereas Ratio-Match sticks with the target image.
For cases with a lot of overlap between the target and query
image they should perform similarly. However when we match
images where the target image may not overlap at all with the
query image, using the query image and not the target image
as a baseline set seems like a reasonable choice, given that the
baseline set would be closer to the feature matched in this case
and more strictly rule out false correspondences.

The three assumptions underlying the formal ranking of al-
gorithms presented above have been chosen to reflect condi-
tions under which we would ideally match feature points. How-
ever, for each assumption there exist corner cases where it is no
longer valid. In this section we discuss these corner cases in
order to review the circumstances under which the absolute or
relative performance of the algorithms might differ.

The first assumption states that every feature point has at
most one unique match, which is often the case for natural im-
ages. However, for the recognition of object classes or in im-
ages with repetitive content, a point in the query image might
have several true correspondences in the target image, so us-
ing a baseline match from the target image will lead to a much
higher uniqueness ratio. However, as long as the query image
does not contain repetitive objects, we can still use Self-Match
without loss of precision. Conversely the query image could
have several similar objects, which could negatively impact per-
formance for all algorithms except Ratio-Match in cases where
the target image only contains one such object. However, when
applied to scene matching, we would normally expect there to
be several similar objects in the target image too. Matching
any of these points could easily lead to ambiguities. Here the
uniqueness assumption plays to our advantage by forcing us to
ignore features that will lead to ambiguous matches.

According to the second assumption, feature descriptors be-
have such that when matched, a true correspondence to a query
feature will always be closer in distance than any other fea-
ture in the query image. For this assumption to be violated,
either the query image has to contain repeating patterns (vio-
lating assumption #1), or the two images are so different (i.e.
taken from very different viewpoints or under different lighting
conditions) that the descriptor distance between two unrelated
features ends up being closer than the distance between a fea-
ture and its true correspondence. In this case Ratio-Match-Ext
and Mirror-Match would discard the match while Ratio-Match
would still attempt to match the descriptor to a feature in the
target image.

The empirical results of Self-Match (Figure 6) support the
second assumption. Self-Match discards any match where a
feature in the query image is more similar to the query feature,
yet the algorithm consistently performs equally well or better
than Ratio-Match, providing further evidence to the notion that
for almost all true correspondences the best match is found in
the target image. As we would expect, this assumption breaks
down when we increase 7 to accept matches with higher unique-



ness ratios, illustrated by the higher recall rates of Ratio-Match
compared to Self-Match in most plots. Once we accept almost
all proposed nearest neighbors as matches, we are bound to en-
counter more non-distinct feature points for which even true
correspondences might have better matches amongst the query
features.

The third assumption states that the uniqueness ratios us-
ing either the query or target image as the baseline set would
be similar in distribution, given that the feature point we are
matching has a true correspondence. We can support this as-
sumption by looking at the uniqueness ratios returned by Self-
Match and Ratio-Match, since they use the query and target
image respectively to calculate them. Figure 3 shows the ac-
tual uniqueness ratios measured from 3024 image pairs featur-
ing 3D objects (see Section 4 for more on this dataset). For
ratios lower than 0.7, the uniqueness ratios are similar, but as
we approach more lenient thresholds, the ratios based on the
query image are higher than those for the target image. This
means that the third assumption becomes invalid for more le-
nient thresholds, and we can no longer expect Mirror-Match to
outperform Ratio-Match-Ext.

Hmm Self Match
mmm Ratio Match
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Fig. 3: Normalized histogram of the uniqueness ratios of true correspondences
for 3024 image pairs.

4. Experimental Evaluation

4.1. Database and Procedure

We evaluate the matching algorithms of our framework
on the 3D Objects database released by Moreels and Perona
(2007). Sample images from the dataset are shown in Figure 4.
We use images of 84 objects under three different lighting con-
ditions at 12 different angle intervals, resulting in a total of 3024
image pairs.

Fig. 4: Samples from the 3D Objects dataset (Moreels and Perona, 2007).

To validate matches, Moreels and Perona (2007, p.266) pro-
posed a method using epipolar constraints, which is outlined in
Figure 5. According to their experiments, these constraints are
able to identify true correspondences with an error rate of 2%.

wA6

(b) Auxiliary Image

(a) Query Image

(c) Target Image (d) Epipolar constraints

Fig. 5: Creating epipolar constraints based on three source images (Moreels
and Perona, 2007) (best viewed in color). (a) Query image marked with the
position of the feature we are attempting to match. (b) Auxiliary image, taken
at the same rotation as the query image but from a higher elevation angle. The
line going through the image is the epipolar line of the feature point in the
query image. The markers indicate all feature points in the image found near
the epipolar line. (c) Target image rotated 45 degrees from the query image.
The line overlaid on the image represents the epipolar line corresponding to the
feature point shown in the query image. The markers indicate all feature points
in the image found near the epipolar line. (d) Target image overlaid with the
epipolar lines corresponding to all features shown in (b). A true correspondence
should be found within a small distance of one of the intersections of the line
in (c) and the lines in (d). In this particular case both feature points shown in
(c) and (d) are potential true correspondences.

We use their proposed method to generate the ground truth for
the evaluation of our framework.

To compute the total number of possible correspondences,
we take all features in a query image and count how many have
a feature in the target image which would satisfy the epipolar
constraints outlined above. Features with no correspondences
are not included in the set of features for testing. This is neces-
sary because a relatively small number of actual true correspon-
dences between folds in the background material were mistak-
enly counted as false positives when evaluated, which affects
the precision of the test in particular in cases with few true cor-
respondences. In practice very few feature points are excluded
for this reason.

We evaluate all matching algorithms from our framework on
the 3D Objects dataset by matching images at different angular
intervals. For each object we pick the query image as the image
taken at 10 degrees rotation for calibration stability. We then
match this image with the same object turned an additional A
degrees, A € {5, 10,...,60}. For every angle interval we com-
pare images taken under 3 different lighting conditions as pro-
vided by the dataset.

4.2. Results

Figure 6 shows the performance of the different matching
methods in our proposed framework for 12 increasingly big-
ger angle differences. We use precision-recall plots to facilitate
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Fig. 6: Results for the 3D objects dataset. Each plot contains the results of 84 objects photographed under 3 different lighting conditions averaged over each image

pair.

comparisons in terms of precision at similar levels of recall. For
each plot we show the average results over all 3D objects, with
equal weight given to each image pair.

Ratio-Match and Self-Match exhibit similar results, while
Mirror-Match and Ratio-Match-Ext outperform both of them,
showing the advantage of composing the proposal set of fea-
tures from both images. Mirror-Match fares slightly but consis-
tently better than Ratio-Match-Ext. In general we see the largest
performance improvements at lower recall and a convergence of
precision at higher recall. This is expected since a higher recall
is a direct consequence of a more lenient threshold; as we let
the threshold approach 1, we lose the benefits of thresholding
on the uniqueness ratio, and all methods start approximating the
results of a simple nearest neighbor match. For all but Ratio-
Match, the features with better matches within the same image
are still weeded out, which explains the tail end of Ratio-Match
at high recall where the other algorithms no longer have results.

The performance gap between methods increases gradually
with angle, reaching its maximum between 25 and 40 de-
grees, where Mirror-Match exhibits about 20 percentage-points
higher precision than Ratio-Match. At larger viewpoint differ-
ences, the performance gain decreases. We suspect this is partly
because assumption #2 breaks down when the images are trans-
formed beyond a certain level of recognizability.

As we demonstrated previously (Arnfred et al., 2013), the re-
moval of within-image matches improves performance on im-
age pairs with partial or no overlap; within-image matches may
occur for example when an image contains repeated structures,
as shown in Figure 7. For no overlap we would expect a match-
ing algorithm to reject matches within regions that have no
matching counterparts in the other image.

To summarize, the methods perform as predicted on the 3D
Objects dataset, with Mirror-Match in general performing bet-
ter than Ratio-Match-Ext, which in turn outperforms Ratio-
Match. The experimental results also show that the overall per-
formance of Self-Match is equal to or better than Ratio-Match.

(b) Mirror-Match

Fig. 7: Ratio-Match vs. Mirror-Match using an example image pair from the
Gallagher and Chen (2008) dataset. Green/red lines indicate correct/incorrect
matches, respectively. Using Ratio-Match, incorrect matches occur in the fence
at the bottom of the image, because points on the fence match with other sim-
ilar points in the same image (a). With Mirror-Match, most of these incorrect
matches are eliminated (b).

4.3. Complexity and Speed

In terms of computational complexity, the algorithms can be
implemented in O(n log n), if we assume that both the query and
the target image have n feature points. For a target image with m
features where m is significantly different from n, the complex-
ities are as noted in Table 1. In practice the constant factors
involved in the actual matching of two images with approx-
imately the same number of feature points are usually small
enough that all the algorithms run at very similar speeds. This
is also shown in Table 1, which contains the running times as
measured while matching 15 objects under three different light-
ing conditions (42 image pairs were matched in total). The run-
ning times are averaged over three separate runs of each algo-
rithm implemented using the same data structures and libraries
in Python.



Table 1: Complexity and average running times over 42 different image pairs
with average n = 237 and average m = 247 feature points as tested on an Intel®
Core™ i5-3550 CPU @ 3.30 GHz with 8 GB memory.

Algorithm Complexity Avg Running Time
Self-Match O(nlog(nm)) 2.62s
Ratio-Match O(nlog(m)) 2.53s
Ratio-Match-Ext  O(nlog(n +m))  2.49s
Mirror-Match O(nlog(n + m)) 2.44s

5. Conclusions

We have proposed a general framework of feature matching
methods, building on the ideas behind Ratio-Match and Mirror-
Match, and introducing the additional variants Self-Match and
Ratio-Match-Ext. We formally proved under three assump-
tions that Mirror-Match performs better than or equal to Ratio-
Match-Ext in terms of precision and recall, which in turn per-
forms better than or equal to Ratio-Match.

The theoretical findings are confirmed by our experimental
evaluation using images of rotated 3D objects, with Mirror-
Match often outperforming Ratio-Match significantly over
3024 image pairs. These performance gains come for free in
terms of both computational complexity as well as actual com-
puting time.
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