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Abstract. This paper presents a new illumination invariant operator, combining the

non-linear characteristics of biological center-surround cells with the classic Difference of

Gaussians operator. It specifically targets the underexposed image regions, exhibiting

increased sensitivity to low contrast, while not affecting performance in the correctly

exposed ones. The proposed operator can be used to create a scale-space, which in

turn, can be a part of a SIFT -based detector module. The main advantage of this

illumination invariant scale-space is that, using just one global threshold, keypoints can

be detected both in the dark and the bright image regions. In order to evaluate the

degree of illumination invariance that the proposed, as well as, other existing operators

exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging

conditions, compared to existing databases, containing real scenes under various degrees

and combinations of uniform and non-uniform illumination. Experimental results

show that the proposed detector extracts greater number of features, with high level

of repeatability, compared to other approaches, for both uniform and non-uniform

illumination. This, along with its simple implementation, renders the proposed feature

detector particularly appropriate for outdoor vision systems, working in environments

under non-controlled illumination conditions.

Keywords: feature detector; biologically inspired; scale-space pyramid; illumination

invariant
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1. Introduction

Difference of Gaussians (DoG) is a well-established operator in the field of computer

vision, used for the extraction of edges [1] or features, as part of the Laplacian pyramid

[2]. The Laplacian pyramid is part of the Scale-Invariant Feature Transform (SIFT)

detector [3, 4], which is extensively used in many computer vision tasks [5, 6, 7] Although

the SIFT detector has been designed in such way that it exhibits some degree of

illumination invariance (the local minima and maxima keypoints in the scale-space are

invariant to contrast magnitude and thus, invariant to illumination changes), non-uniform

illumination conditions can still be a challenge. This is clearly depicted in Figure 1, in

which, a scene is captured under three different kinds of illumination, uniform bright,

uniform dim and non-uniform. For each of these three cases, the extracted keypoints

and their sum total is shown, for different threshold values. As expected, in all three

cases the number of extracted keypoints is inversely related to the threshold value.

Furthermore, lower threshold values (cases D and E) result to the extraction of keypoints

corresponding to noise and not to any surface properties. Ideally, the total number and

locations of all extracted keypoints should be identical in all three images, since they

depict exactly the same scene. However, there are important differences between the

three types of illumination, and especially between the uniformly well exposed image

and the image under non-uniform illumination.

The differences are both in the location of the extracted keypoints and in their total

sum. In the case of the uniformly well-exposed image, high threshold values (cases A

and B) result in the extraction of keypoints in all the regions of the foreground. On the

contrary, in the case the image is captured under non-uniform illumination, the extracted

keypoints are located only at the bright regions of the foreground. No keypoints are

extracted on the dark image regions. Furthermore, the number of keypoints in the case of

non-uniform illumination is less than half, compared to the uniformly well-exposed image.

In order to extract keypoints in the dark image regions, for the case of non-uniform

illumination, threshold must be set to 25% (case C) of its original value (case A). Still,

in this case, the number of keypoints located in the shadows is way less than in the

well-exposed image. Any attempt to decrease the threshold value even further (cases D

and E), results to the extraction of keypoints not corresponding to any surface properties

but to noise. Consequently, almost the whole image is covered by keypoints. The case of

dim uniform illumination exhibits an intermediate state between the two extremes of

bright uniform and non-uniform illumination. More specifically, for threshold cases A

and B, the number of extracted keypoints, as well as their locations, are similar to the

bright uniform illumination. This is in accordance with the fact that the local minima

and maxima in the scale-space are invariant to the magnitude of contrast. However, as

threshold values lower (cases D and E), the number and location of keypoints resembles

the case of non-uniform illumination.

A similar example is shown in Figure 2, where a scene with two color checkers,

under non-uniform illumination is depicted (Figure 2(a)), with one located within a
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Figure 1. The extracted SIFT keypoints and their total number, for various threshold

values, in a scene captured under three different kinds of illumination.

strong shadow and the other in a well-exposed image region. This image is part of the

High Dynamic Range work-shop presented during the last CREATE (Color Research for

European Advanced Technology Employment) meeting [8]. Figure 2(b) depicts a single

scanline of this image, which crosses the achromatic set of boxes, for both color checkers,

while Figure 2(c) depicts the output of the DoG operator for this specific scanline. It is

evident that the magnitude of gradient in the dark image region is significantly lower

than the one in the well-exposed region. In these cases, although the local extrema of the

gradient will be detected both in the dark and bright regions, it is difficult to find a single

global threshold that will result in the selection of keypoints in the whole image. More

importantly, since this threshold has to be set quite low, in order to detect gradients of

low magnitude, it may result in the extraction of keypoints that correspond to noise.

The above examples demonstrate the limitations of the classic scale space regarding

illumination invariance. This can have a negative impact to vision systems that operate
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(a)

(b)

(c)

(d)

Figure 2. (a) A scene with two color checkers, under non-uniform illumination; (b) A

single scanline of the image scene, which crosses the achromatic boxes, in both color

checkers; (c) The output of the DoG operator for the scanline; (d) The output of the

nDoG operator for the scanline.

under non-controlled illumination conditions. In such cases, the captured images will

inevitably suffer from underexposed regions, preventing the extraction of keypoints in

these areas. As a result, object recognition, or any other feature-based algorithm, will be

impaired, thus, deteriorating the performance of the whole system. Consequently, any

method or approach that gives a solution to this problem is of significant importance to

the computer vision community.

The first attempts towards this direction introduced a new vision framework for

robust object recognition in cluttered environments [4]. Existing techniques are based on

appearance features holding data with local estate. Algorithms of this kind extract local

features with local extend invariant to possible illumination, viewpoint, rotation and

scale changes [9]. The two main sub-mechanisms of such frameworks are a detector and
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a descriptor of the areas of interest. The main idea underlying such mechanism is that

while the interest point detector pursues points or regions in a scene containing data

that are salient within their local neighborhood, the descriptor organizes the information

collected from the detector in a discriminating manner, so that the image is characterized

by a collection of high dimensional feature vectors. One of the first attempts for the

determination of illumination-invariant features have been proposed by Westhoff et al.

[10] where the quantitative bilateral symmetry of an examined scene is computed using

dynamic programming and vertical symmetry images are extracted using non-maxima

suppression and hysteresis thresholding. Tang et al. [11] presented a novel feature

descriptor called ordinal spatial intensity distribution that provided a great degree of

invariance to any monotonically increasing brightness. More recently, Yu et al. [12]

examined the relationship of the relative view and illumination of the images for better

image matching. In the context of illumination-invariant localization for indoor robots

Lee et al. utilized a twofold approach of orthogonal lines and local descriptor-based

point features [13]. Furthermore, the latest attempts in face recognition domain involved

the use of Haar local binary pattern features by [14] and neighboring wavelet coefficients

for great illumination invariance during the extraction of local features [15].

The contribution of this paper is twofold. First, it introduces a new DoG-based

operator, inspired by the center-surround cells of the Human Visual System (HVS),

which exhibits improved illumination invariant characteristics, compared to classic DoG.

This operator can be used for the creation of an illumination invariant scale-space, which

can improve scale-space based local detectors, like SIFT, by increasing their robustness in

various kinds of illumination changes. More specifically, the proposed scale-space exhibits

improved response in the underexposed image regions and exactly the same response,

with the classic DoG-based scale-space, for the well-exposed image regions. As a result,

it ensures that a single global threshold can extract keypoints both in the shadows and

in the bright areas, avoiding at the same time the extraction of those corresponding to

noise. Additionally, the proposed scale-space is simple to implement and incorporate

in existing SIFT -based vision systems, thus, enhancing their illumination invariance,

especially for non-uniform illumination conditions, while not affecting their performance

in bright uniform illumination. Consequently, it can boost the performance of vision

systems which operate in non-controlled illumination environments.

The second contribution of this paper is a new dataset specifically targeted to

evaluate the illumination invariance of vision systems. Unlike existing datasets, the

proposed is the only one featuring scenes under various degrees and combinations of

uniform and non-uniform illumination. As a result, to the best of our knowledge, it

constitutes the only existing dataset that can provide clues on how the performance of

algorithms may vary according to different illuminations and imaging conditions. The

remainder of the paper is organized as follows: Section 2 briefly describes the biological

background upon which the proposed method is based. Section 3 describes the proposed

biologically-inspired scale space. Section 4 presents the new benchmark database. The

experimental results are presented in Section 5 and concluding remarks are made in
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Section 6.

2. Biological background

2.1. Biological center-surround operators

Neurophysiological studies have revealed that the receptive fields of the retinal ganglion

cells, as well as those of other center-surround cells in the HVS, can be modeled as DoG

operators [16]. Contrary to the classic DoG operator though, the center-surround cells of

the HVS exhibit non-linear responses. Interestingly, the nonlinear response of ganglion

cells is thought to contribute to illumination invariance and contrast enhancement [17].

According to the standard retinal model [18, 19], the output Xij of an ON-center OFF-

surround cell at grid position (i, j), obeying the membrane equations of physiology is

given by

dXij(t)

dt
= gleak(Xrest −Xij) + Cij(Eex −Xij) + Sij(Einh −Xij) (1)

with

Cij =
∑

IpqGσC(i− p, j − q) (2)

Sij =
∑

IpqGσS(i− p, j − q) (3)

where gleak is a decay constant and I is a luminance distribution (i.e. the image

formed in the photoreceptor mosaic). Xrest (the cell’s resting potential), Eex (excitatory

reversal potential) and Einh (inhibitory reversal potential) are constants related to the

neurophysiology of the cell. GσC and GσS are Gaussians representing the center and the

surround of the cell’s receptive field respectively, which are assumed to be normalized in

order to integrate to unity. The steady-state solution of equation 1 is given by:

Xij,∞ =
CijEex + SijEinh
gleak + Cij + Sij

(4)

Equation 4 summarizes the difference between the nonlinear DoG operator in biological

vision and its linear counterpart used in computer vision. When Eex = 1 and Einh = −1,

which is usually the case for center-surround cells, the numerator of equation 4 is a

standard linear DoG operator. However the denominator consists of a Sum of Gaussians

(SoG) augmented by the decay constant gleak. This acts as a multiplicative gain

control, where, with increasing activity of both center and surround (i.e. with increasing

luminance), the cell’s response will decrease. On the other hand, in low luminance

conditions, the cell’s response is increasing, due to the low activity of center and

surround in the denominator. As a result, center-surround cells in biological visual

systems exhibit a normalized response, invariant to different illumination conditions.

Since the Laplacian pyramid has already a biologically-plausible DoG architecture,

equation 4 can be rewritten in a more compatible way to the classic scale-space, by



7

utilizing the adjacent scales of the Gaussian pyramid. We call this operator normalized

Difference of Gaussians - (nDoG).

nDoG(i, j, σ) =


L(i, j, κσ)− L(i, j, σ)

L(i, j, κσ) + L(i, j, σ)
, if L(i, j, κσ) + L(i, j, σ) 6= 0

0, else

(5)

with

L(i, j, κσ) = G(i, j, κσ) ∗ I(i, j) = Sij
L(i, j, σ) = G(i, j, σ) ∗ I(i, j) = Cij
where I is the input image, G is the Gaussian function, L is the blurred image resulted

by the convolution of I and G, (i, j) are the spatial coordinates, κ is a multiplicative

factor that determines the different levels of blurring between adjacent scales and σ

is the standard deviation of the Gaussian. L(i, j, κσ) and L(i, j, σ) can be thought as

the surround Sij and the center Cij, respectively, of a center-surround receptive field of

the HV S. In the rest of the paper we will use the notation of center C, and surround

S, to denote the fine L(i, j, σ) and coarse L(i, j, κσ) adjacent scales, respectively, in a

Gaussian pyramid.

2.2. Comparison between DoG and nDoG

Figure 2(d) depicts the response of the nDoG operator for the scanline of Figure 2(b).

The main difference between the classic DoG operator and nDoG is clearly evident

when comparing Figure 2(c) with Figure 2(d). More specifically, the nDoG operator

exhibits an increased response in the underexposed image region, by almost a factor of

15, compared to the DoG, and an almost identical response to DoG for the well-exposed

region. As a result, the nDoG operator is more invariant to local illumination changes.

The main reason for this discrepancy between the two operators is evident in Equations

6 and 7, which define them as a function of local contrast differences S − C.

nDoG =
S − C
S + C

=
S − C

S + C − C + C
=

S − C
S − C + 2C

=
x

x+ 2C
=

x

x+ A
= f(x) (6)

and

DoG =
S − C
B

=
x

B
= g(x) (7)

with S representing the surround, C the center, B the maximum value that S or C may

take and x = S−C is the local contrast differences. nDoG exhibits a non-linear response

to x, adjusted by parameter A and described by function f . This function is a form of

the Naka-Rushton function [20] which has been identified in many vision-related cell

types and has been associated with the enhancement of contrast sensitivity in the HV S

[21]. On the other hand, DoG has a linear response to x, described by function g. Figure

3 depicts the graph of function f , for various values of A, in comparison to function g.

It is evident that for small values of A, f exhibits a steeper non-linear response. This

non-linearity ensures that even low input values x, will result to high output responses
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f(x). On the contrary, since function g is linear, low input values x will result to low

output responses g(x). This essentially means that the nDoG operator has an increased

response to lower local contrast, which is the case for underexposed image regions.

Although nDoG may exhibit an improved response to shadows, compared to DoG,

it presents an important drawback that prevents its direct use for the creation of a

scale-space, i.e. it does not exhibit a constant maximum output. This is clearly depicted

in Figure 3, in which, fmax fluctuates according to the parameter A. This is more evident

for high local contrast values, near the maximum value B. In practice, this essentially

means that for bright image regions, nDoG will exhibit a lower response, compared to

DoG. Consequently, the same threshold will result into the extraction of fewer keypoints

for nDoG.

Figure 4 depicts the location and the number of extracted keypoints (using always

the same threshold) for both nDoG and DoG, in a scene captured with different exposures.

In the overexposed image, the number of extracted keypoints for DoG is approximately

double, compared to nDoG. This is a direct result of the decreased output of the former

in bright image regions. As exposure decreases though, so does the number of extracted

keypoints for DoG. Consequently, in the case of the underexposed image, DoG results into

approximately five times less keypoints, compared to the overexposed image. Contrary

to DoG, nDoG exhibits the opposite behavior; as exposure decreases, the number of

extracted keypoints increases. As a result, in the underexposed image, nDoG results

into approximately five times more keypoints, compared to the overexposed one. This

example demonstrates the complementary characteristics of these operators and implies

that a combination of the two could result into a more robust behavior in terms of

Figure 3. The graph of function f (nDoG), for various values of A, in comparison to

function g (DoG).



9

illumination invariance.

3. Proposed operator and scale-space

According to the SIFT algorithm, a threshold is used to discard scale-space local extrema,

caused by low gradient magnitude, since most of the times these points correspond to

noise and not to surface properties. This approach however, may result into sacrificing

the extraction of keypoints in dark image regions, and thus, impair the performance of

vision systems operating in non-controlled illumination conditions. In order to avoid

this unwanted behavior, the proposed method attempts to meet the following two

requirements:

• Improve the response of the DoG operator in the underexposed regions, in order to

extract keypoints that correspond to surface properties and not noise.

• Maintain exactly the same response with DoG in the correctly exposed and

overexposed regions.

The first requirement ensures that there will be no sacrifice of extracted keypoints in

shadows, while trying to avoid the extraction of noise-related features. The second

requirement ensures that no performance changes will take place in existing systems

Figure 4. The location and number of extracted keypoints for nDoG and DoG, in a

scene captured with different exposures.
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that rely on the extraction of features based on the DoG scale-space. These two

requirements essentially indicate that the improvement should be specifically targeted

only to underexposed regions, without affecting the already good performance of DoG

in all the other parts of the image.

In order to achieve this objective, we combine DoG and nDoG into one piecewise

function that will selectively use one of the two operators in the appropriate cases. To

further investigate the properties of the two operators and define the cases in which

each one could be used, the 3-dimensional graphs of nDoG and DoG are depicted in

Figure 5(a) and Figure 5(b), respectively. These graphs essentially plot all the outputs

for every possible combination of a center C and a surround S within the interval [0, B].

An apparent difference between the two graphs is when the center and the surround

comprise small values near 0. This is the case of underexposed image regions, and as

shown previously, nDoG exhibits a strong non-linear response, compared to the linear

one of DoG. Another, not so obvious difference, between the two graphs is when the

center or the surround have values near B. This is the case of bright image regions,

in which, DoG was found to exhibit better behavior compared to nDoG. In order to

illustrate more clearly the dissimilarities between nDoG and DoG, the 3-dimensional

representation of their output differences (nDoG − DoG) is depicted in Figure 5(c).

Additionally, Figure 5(d) depicts the center-surround plane of Figure 5(c).

From these two graphs, as well as Equations 6 and 7, it is evident that the two

operators have identical outputs only when C = S(DoG = nDoG = 0) and C + S = B

(DoG = nDoG = (S − C)/B). These two cases define two lines which divide the

center-surround plane shown in Figure 5(d) into four quad-rants; Q1, Q2, Q3 and Q4,

respectively. In every one of these quadrants, the output of one operator is always greater

than the other.

Q1 is defined as (C > S) ∩ (C + S > B). In this case we have:

S − C < 0

S + C > B

}
⇒ S − C

S + C
>
S − C
B

⇒ nDoG > DoG (8)

Similarly, Q2 is defined as (C > S) ∩ (C + S < B) and in this case:

S − C < 0

S + C > B

}
⇒ S − C

S + C
<
S − C
B

⇒ nDoG < DoG (9)

Q3 is defined as (C < S) ∩ (C + S < B) and

S − C > 0

S + C < B

}
⇒ S − C

S + C
>
S − C
B

⇒ nDoG > DoG (10)

Finally, Q4 is defined as (C < S) ∩ (C + S > B) and

S − C > 0

S + C > B

}
⇒ S − C

S + C
<
S − C
B

⇒ nDoG < DoG (11)
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(a) (b)

(c) (d)

Figure 5. (a) The 3-dimensional graph of the nDoG operator; (b) The 3-dimensional

graph of the DoG operator; (c) The 3-dimensional graph of the difference between

nDoG−DoG; (d) The 2-dimensional projection of the difference between nDoG−DoG

into the center-surround plane.

Taking into consideration the requirements mentioned above, it is obvious that we have

to differentiate between dark and bright image regions. A straight forward way is to use

the sum of C and S as an indicator. As it is evident from Figure 5(d), the line C+S = B

divides all the possible values into two sets: Q1 ∪ Q4, in which C + S > B and thus

(C + S) ∈ (B, 2B], and Q2 ∪Q3, in which C + S < B and thus (C + S) ∈ (0, B). Sum

values in the interval (0, B) can be considered to result from dark image regions, since

both center and surround have low values in these regions. On the other hand, sum

values in the interval (B, 2B] result from bright image regions, since center and surround

have higher values. Using this as an indicator for bright and dark image regions, we

incorporate these requirements into the following piecewise function:

iiDoG =


nDog :

S − C
S + C

if C + S < B

0 if C = S = 0

DoG :
S − C
B

if C + S > B

(12)



12

where iiDoG is the proposed illumination invariant Difference of Gaussians operator.

Interestingly, one can reach the same result using a whole different approach for combining

nDoG and DoG. Since SIFT uses a global threshold to discard keypoints of low gradient

magnitude, it is valid to assume that selecting always the response of the operator with

the higher absolute output, will usually result into the extraction of greater number of

keypoints. In order to achieve this behavior, one has to select the maximum value between

DoG and nDoG, when both are positive and the minimum value when both are negative.

Since the two operators have the same numerator (S-C), and their denominators are

always positive non-negative values, they will always have the same sign. Additionally,

the line C-S=0 is the boundary in which the sign changes either to positive or to negative.

This line divides all the possible values into two sets: Q1∪Q2, in which both nDoG and

DoG are negative, because C > S, and Q3 ∪Q4, where both are positive, since S > C.

Consequently, one should select the operator with the smaller output in quadrants Q1

and Q2 (Q1 : DoG,Q2 : nDoG and the operator with the greater output in quadrants

Q3 and Q4 (Q3 : nDoG,Q4 : DoG). This is summarized in the following equation

iiDoG =


min[nDoG,DoG] if S − C < 0

0 if C = S = 0

max[nDoG,DoG] if S − C > 0

(13)

Equation 13 can be also rewritten as:

iiDoG = max[[DoG]+, [nDoG]+] +min[[DoG]−, [nDoG]−] (14)

with [·]+ = max[·, 0] and [·]− = min[·, 0]−. In particular, equation 14 is more appropriate

for array-based implementations, like in Matlab, since, once the DoG and nDoG output

arrays have been computed, it provides the final result using simple max/min operations

between them.

Equations 12, 13, 14 are all equivalent and their 3-dimensional graph is depicted

in Figure 6, which essentially is a combination of Figure 5(a) and Figure 5(b). The

iiDoG operator combines the strengths of DoG and nDoG, while avoiding at the same

time their drawbacks. More specifically, iiDoG exhibits the illumination invariance

characteristics of nDoG, in the underexposed image regions, while maintaining the

already good performance of DoG in the bright image regions. Figure 7 depicts the

proposed scale-space, employing the iiDoG operator. The main advantage of the proposed

approach is that using the global threshold of SIFT s detector, keypoints can be extracted

both in the correctly exposed image regions and in the shadows. More importantly, the

improvement is strictly targeted to the underexposed image regions, with no departures

from the performance of the classic SIFT in the bright and well exposed areas. Taking

also into account the fact that the implementation of the proposed scale-space is very

simple, it can be used for improving the illumination invariance of SIFT -based vision

systems.

The proposed approach could be seen as a spatial Automatic Gain Control (AGC)

method. Apart from the computer vision and image processing domain, AGC techniques
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Figure 6. The 3-dimensional graph of the proposed iiDoG operator.

Figure 7. The proposed scale-space, based on the iiDoG operator.

have been proposed in other disciplines as well, such as geophysics, in order to balance

different kinds of signals, e.g. aeromagnetic data. Two notable methods in this context

are [22] and the Theta map [23], with the former, presenting better results than the latter.

Figure 8 depicts a comparison between the proposed iiDoG, DoG, and DoG+manual

gain methods along with one proposed by Cooper, for the scanline of Figure 2. For the

DoG+manual gain method, a gain of ×20 was applied only to the underexposed image

region. Compared to this, the proposed method exhibits an almost equal amplification

of the original DoG signal, in the underexposed region, while keeping it untouched in the

correctly exposed. More importantly though, there is lower enhancement of noise in the

underexposed region. This is not the case however with Cooper’s approach. When the

amplification of the underexposed region is significant (k = 0.001, k = 0.0001) there is

also considerable enhancement of noise. As a result, this will result into the extraction of

many noisy feature points by the SIFT detector. Additionally, the signal in the correctly

exposed image region is affected, and consequently, this would change the performance of

a SIFT -based system, if the method presented in [22] was used as an AGC. Finally, this

method is based on the Hilbert transform, and as a result, every level of the Gaussian

Pyramid should be transferred to the frequency domain. This inevitably would increase

the computational cost. On the contrary, this is not the case for the proposed method,
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Figure 8. Comparison of the proposed iiDoG with automatic gain control methods.

since it is applied directly on the spatial domain.

4. Phos benchmark image database

In order to test the proposed approach, a new benchmark database has been constructed,

aiming to evaluate the performance characteristics of feature detectors under various

illumination conditions. The name of the proposed image database is Phos, which in

Greek means light. Existing datasets focus on different viewpoints, rotation and zooming

of the scenes [24], in order to test the invariance of systems in these categories. Very

little attention is given, though, to the actual illumination conditions, which may exist

outdoors. The vast majority of previously presented benchmarks, regarding illumination

invariance, are done by manually adjusting image brightness with an image processing

software. One significant exception is the Leuven sequence presented by Mikolajcyk and

Schmid [25] where the illumination changes were occurred by adjusting the cameras

aperture. This approach, however, is far from realistic. The algorithm that adjusts the

brightness in an image processing software, does not necessarily exhibit the same results

as the ones resulting by the exposure of a camera under real conditions.

More importantly, as the comparison of Figure 1 showed, underexposed image

regions tend to have lower signal-to-noise ratio, making it difficult to distinguish between

keypoints corresponding to surface properties and keypoints corresponding to noise.

Consequently, taking a well exposed image, with overall good signal-to-noise ratio, and

manually lowering its brightness, will not have the same effect as if the same scene would
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have been captured under lower illumination conditions. Furthermore, illumination

in outdoor scenes is usually non-uniform. Multiple light sources, shadows and high

dynamic range imagining conditions may dramatically affect the quality of captured

images. As a result, any camera system functioning outdoors, will inevitably exhibit a

performance reduction due to the above reasons. Undoubtedly, it is very important to

measure this reduction. However, currently, there are no benchmark image databases

which can be used for evaluating the performance of algorithms under more realistic

lighting conditions.

The main objective of the new image database is to fill this gap in the existing

benchmark databases, by specializing in realistic illumination conditions. More

particularly, every one of the 15 scenes of the database contains 15 different images: 9

images captured under various strengths of uniform illumination, and 6 images under

different degrees of non-uniform illumination. The images contain objects of different

shape, color and texture. Moreover, the objects are positioned in random locations inside

the scene. Figure 9 depicts one scene from the new image database. Phos database is

publicly available at [26].

Uniform illumination (first row of Figure 9) is achieved using multiple diffusive light

sources, evenly distributed around the objects, and a Lambertian white background. The

different strengths of uniform illumination are captured by adjusting the exposure of the

camera between -4 and +4 stops from the original correctly exposed image. Thus, for

every scene four underexposed and four overexposed images with uniform illumination

were captured. Non-uniform illumination (second row of Figure 9) is accomplished

by adding a strong directional light source to the diffusive lights located around the

objects. By adjusting the strength of the diffusive lights, six different mixtures of uniform

and non-uniform illumination were created, ranging from both directional and uniform

illumination to directional illumination only. This set of images is particularly challenging

for feature detectors due to high dynamic range conditions. It contains strong shadows,

which deteriorate the performance of local feature detectors. The strength of the Phos

dataset lays in the fact that the induced shadows (uniform or non-uniform) are created

incrementally. This offers the unique opportunity to study how the performance of

feature detectors varies as the degree of shadows increases.

5. Experimental Results

In this section the experimental results of the performance of the proposed detector are

presented and discussed. The performance of the new modified detector is compared with

other widely used detectors for illumination and photometric variations in the proposed

image database Phos and in the Leuven sequence presented in [25] and provided by [27].
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Figure 9. One scene from the proposed Phos dataset.

5.1. Evaluation criterion

The criterion used to evaluate a feature detector is the repeatability score the detector

achieves between a given pair of images. More precisely this is the ratio between the

number of region-to-region correspondences and the smaller number of regions detected

in one of the images [28]. The evaluation procedure is similar to [29] which encompass

only the features located in the part of the scene appearing in both images under

comparison, to be taken into consideration. First, the homography between the pair of

images is estimated, in order to calculate the ground truth measurement of the possible

transformation. Given the estimated homography, the projected position of features

and the corresponding regions of the two images are calculated and the amount of

the overlap is verified. The overlap error between corresponding regions is the ratio

(1 − intersection/union) of the elliptic regions and it is analytically computed using

the ground truth transformation. The repeatability score depends on the overlap error.

Therefore, in order to be evaluated, different overlap errors are computed as well.

5.2. Test data and results

The proposed iiDoG operator is used for the creation of a scale-space. This scale-space

is integrated in a SIFT -based detector, using exactly the same parameters (threshold,

scales etc.) with the classic SIFT detector. In order to test the performance of the

proposed detector three major experiments were conducted. The first one is conducted

using the proposed image database, Phos, in order to test the illumination invariance of

the proposed detector, compared to the performance of others. The algorithms used for

the testing were the Maximally Stable Extremal Region - (mser) detector [30], the Harris-

Affine - (har-aff) [31], the Hessian-Affine - (hesaff) [31], the intensity extrema-based

region detector - (ibr) [29], the edge-based region detector - (ebr) [32], the original SIFT

detector [4] and the detector module of SURF [9]. All these detectors were tested, along

with the proposed, for repeatability, overlap error and the number of correspondences.

Figure 10 depicts the evaluation of iiDoG detector for the case of uniform illumination

in the Phos dataset (first row of Figure 9). The correctly exposed image was used

as reference and each of the others (+4,+3,+2, +1, -1, -2,-3-,4) as subjects for
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comparison. The results of this experiment clearly demonstrate that the proposed

detector, outperforms all the other detectors in repeatability, as the exposure varies

(10(a)), and when the overlap error becomes larger (10(b)). Additionally, that the

proposed detector exhibits the higher number of corresponding regions in 5 out of the

total 8 cases (10(c)). More importantly, in cases where the iiDoG is not first, it is only

marginally outperformed by other detectors, ranked second among all the others.

Figure 11 depicts the performance of the tested algorithms for various degrees of

non-uniform illumination in the same scene (second row of Figure 9). Similarly to the

case of uniform illumination, the proposed iiDoG operator and its resulting detector,

clearly outperform all the other methods in repeatability, both when the strength

of the illumination varies (11(a)) and when the overlap error becomes larger (11(b)).

Additionally, the proposed detector exhibits the higher number of corresponding regions

in all the test cases. More importantly, in this category, the iiDoG detector outperforms

the second one (SURF ) by a factor ranging from 1.6 (first case uniform and directional

illumination) to 3 (last case purely directional illumination). This clearly demonstrates

the improved illumination invariance characteristics of the proposed method, especially

for the difficult cases of non-uniform illumination.

In order to provide indirect comparison with other detectors that were not tested

in our previous experiment, and at the same time have a reference point regarding the

performance of the proposed algorithm, the widely known Leuven dataset was also used,

consisting of several photographs of a parking lot captured under different illumination

conditions [27]. Figure 12 depicts the respective graphs for this dataset. Similarly to the

case of the Phos dataset, the proposed detector outperforms all the others, for the cases

of repeatability (12(a)), overlap error (12(b)) and number of correspondences (12(c)).

Since the main thrust of the proposed method is to locally equalize the gradient

magnitude, in order to facilitate the thresholding of the extracted keypoints, one could

argue that alter-ing the threshold of the classic SIFT detector could result to similar

results. For this reason, we tested the detector performance of iiDoG and the classic

SIFT, for various threshold values. The most challenging image (the one captured under

only directional illumination lower right of Figure 9) was compared to the correctly

exposed one (upper middle of Figure 9). After feature extraction by both detectors, a

matching procedure took place where the amount of correct positive correspondences was

measured. The feature extraction process was repeated for ten threshold values ranging

from 0.01 to 0.3. The number of the detected key points of iiDoG and SIFT, during

these threshold variations, is shown in Figure 13, while the number of correct positive

matches is illustrated in Figure 14. The most interesting observation is the similar

gradients of the lines both in key point detection and matching. Apparently, iiDoG

demonstrates better performance than the original SIFT module for any threshold value.

More importantly, for lower threshold values, the proposed detector exhibits double the

number of correct matches, compared to SIFT. This increase in performance is a direct

consequence of the fact that the proposed method detects keypoints also in the dark

image regions, whereas SIFT does not. As a result, the number of correct matches, in
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Figure 10. Evaluation of the proposed detector for various kinds of uniform

illumination in Phos dataset; (a) Repeatability score for decreasing light; (b)

Repeatability score for increasing overlap error; (c) Number of corresponding regions

in the images.
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the difficult case of non-uniform illumination with many underexposed image regions, is

always higher for the iiDoG detector.

Figure 15 depicts the extracted matching points of a DoG-based SIFT algorithm

and an iiDoG-based one, when applied to the same scene under uniform bright and

non-uniform illumination. The results are depicted for different values of detector

thresholds. In all cases, the proposed method exhibits greater number of matching points.

Furthermore, the total number of matches remains more constant as the threshold value

decreases. Finally, the DoG-based SIFT is more susceptible to wrong matches (lines

which are not horizontal) compared to the proposed one.

6. Conclusions

This paper introduced a new operator combining the non-linear responses of center-

surround cells of the HVS, as well as the reliability of the classic DoG. As a result, this

new operator, iiDoG, exhibits increased output response in the underexposed image

regions and the DoG response in any other cases. The operator can be used to create a

scale-space, which in turn, can be a part of a SIFT -based detector module. The main

advantage of this detector is the local equalization that the iiDoG operator introduces

to the magnitude of gradient, according to which, contrast differences are boosted in

the underexposed image regions, while kept intact in all other cases. Consequently, one

global threshold can result in the extraction of keypoints, both in the dark and bright

image regions.

Experimental results in different kinds and degrees of illumination demonstrated

that the proposed approach outperforms existing detectors and exhibits constantly better

results, especially in the difficult cases of uneven and non-uniform illumination. This

kind of illumination conditions are quite usual in outdoor environments and can pose a

considerable challenge to vision systems. Therefore, the increased illumination invariance

of the proposed detector may be a solution to this problem. Additionally, the proposed

method can be easily implemented, without requiring significant changes in the structure

of existing SIFT -based systems. Finally, the fact that the output of the proposed detector

is exactly the same with DoG, for the cases of well exposed image regions, ensures that

the improvements introduced will only be targeted in shadows. Thus, no unpredictable

or unwanted changes in performance will occur for the cases of correctly exposed images.
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Figure 11. Evaluation of the proposed detector for various degrees of non-uniform

illumination in Phos dataset; (a) Repeatability score for decreasing light; (b)

Repeatability score for increasing overlap error; (c) Number of corresponding regions

in the images.
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Figure 12. Evaluation of the proposed detector for the Leuven sequence; (a)

Repeatability score for decreasing; (b) Repeatability score for increasing overlap error;

(c) Number of corresponding regions in the images.
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Figure 13. Number of detected keypoints between iiDoG and the detector module of

SIFT for various threshold values.
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Figure 15. Comparison of matching points between a DoG-based SIFT and the

proposed ii-DoG-based SIFT.
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