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Abstract  Mean Opinion Score (MOS) has become 

a very popular indicator of perceived media quality. 

While there is a clear benefit to such a “reference 

quality indicator” and its widespread acceptance, 

MOS is often applied without sufficient 

consideration of its scope or limitations. In this 

paper, we critically examine MOS and the various 

ways it is being used today. We highlight common 

issues with both subjective and objective MOS and 

discuss a variety of alternative approaches that have 

been proposed for media quality measurement. 
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1. Introduction 

Most media professionals would like to express 

quality in a way that is commonly understood and 

that facilitates comparisons across different 

algorithms, different organizations, and time. The 

International Telecommunication Union (ITU) has 

defined the opinion score as the “value on a 

predefined scale that a subject assigns to his opinion 

of the performance of a system” [1]. The Mean 

Opinion Score (MOS) is the average of these scores 

across subjects. MOS has emerged as the most 

popular descriptor of perceived media quality. It has 

had great success in the domain of speech quality, 

and consequently it has also been used for other 

modalities such as audio, images, video, and 

audiovisual content, and in numerous applications, 

from lab testing to in-service monitoring. MOS is 

not only used to express the results of subjective 

tests (“subjective MOS”), but also as the output of 

objective measurement algorithms, which provide an 

automated alternative to subjective tests (often 

referred to as objective or predicted MOS).  
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MOS is now the “de-facto” metric used to 

quantify perceived media quality. The 5-point MOS 

scale (excellent, good, fair, poor, bad) in particular is 

extremely popular. This has been very beneficial in 

terms of raising awareness for the importance of the 

perceptual aspect of media quality, and there is a 

clear benefit to a reference indicator of perceived 

quality and its widespread acceptance. However, 

MOS is often used without sufficient consideration 

of how the data has been obtained and the inherent 

limitations and restrictions imposed by the design of 

subjective tests or objective metrics. Various 

assumptions and preconceptions about MOS and its 

meaning prevail that are unfounded or incorrect, for 

example with respect to the accuracy, reliability, or 

applicability of MOS. Not always is it used for the 

right reasons or in the right context.  

In view of these issues, we critically examine 

MOS measurements and the way they are used 

today. We identify common issues with MOS, as 

well as decisions and trade-offs that need to be made 

when designing subjective experiments or using 

objective quality models. Finally, we discuss 

alternative approaches that have been suggested by 

other researchers. In doing so, we hope to stimulate 

more research on this complex and inter-disciplinary 

topic. In addition, this paper will help users of 

subjective and objective MOS better understand and 

interpret these types of measurements. Even though 

some of the cited works may address a specific 

modality, we believe the issues with MOS discussed 

here are very similar across speech, audio, images, 

video, multimedia, or other modalities, so we do not 

explicitly separate them in this paper.  

The paper is organized as follows. Section 2 

reviews subjective testing methodologies, in 

particular aspects related to the design of such tests 

and the analysis of subjective MOS data. Section 3 

reviews considerations for objective metrics and 

their output, in particular issues with model tuning 

and validation. Section 4 discusses a number of 

common applications of MOS, its limitations, and 

alternative approaches to MOS that have been 

proposed for media quality measurement. Section 5 

provides a brief summary of the issues, conclusions 

as well as suggestions for future research on the 

topic. 

2. Subjective MOS 

Many aspects of MOS are determined by the 

choices made in the design of the subjective 

experiments; we provide an overview in this 

Section. A change in any of the design choices may 

well change MOS.  

2.1. From Psychophysics to MOS 

The complex and multi-dimensional nature of 

media perception [2] has resulted in the adoption of 

rather general, relatively open approaches to 

gathering quality assessment data. Current methods 

for obtaining subjective media quality ratings are 

quite different in process and rigor from traditional 

psychophysical methodologies. In the latter, subjects 

are asked to detect the presence of some signal (e.g., 

a tone or light), and from the answers a detection 

threshold can be obtained. These methods are useful 

for examining basic detection of simple stimuli, but 

fail to account for user strategies or confidence in a 

response. Signal detection theory [3] was designed 

to measure users’ confidence in responding to some 

signal as well as to accommodate various strategies 

employed by users. In measuring the quality of 

media signals, the just noticeable difference (JND) 

measure is the most closely related to signal 

detection theory; it is discussed in more detail later 

in Section 4. 

Psychophysical methods are particularly useful 

for examining subjective thresholds for the presence 

of, or changes in, stimuli; in the context of picture 

quality they can be used to identify visible changes 

in the quality of test signals.  However, for stimuli 

such as audio or video, whose spatial and temporal 

properties are complex and dynamic, traditional 

psychophysical methods do not appear well-suited. 

Indeed, the nature of psychophysical experiments 

requires very distinct tasks and test stimuli, and the 

use of natural media clips presents a major 

methodological challenge.  

In media quality evaluations, subjects are 

providing a general opinion of quality for some 
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time-varying signal. In contrast to psychophysical 

methods, standard methods used in subjective 

quality assessment (more on those below) fail to 

provide specific evidence for the contribution of 

different properties of a signal affecting quality 

ratings, but do offer a means for obtaining general 

ratings of highly complex media signals. 

Although some form of subjective quality testing 

has been used since the early days of telephony (e.g., 

speech intelligibility) and television (e.g., line 

resolution), standardized testing procedures were not 

in place until the 1970s. In order to arrive at a 

general opinion of media quality, various 

standardized and non-standardized methodologies 

have been applied. Typically, the output from these 

tests is reported as a MOS value. Lewis [4] indicates 

that “MOS is a Likert-style questionnaire…” where 

a series of questions are asked, and respondents are 

required to provide answers on a single scale. Likert 

scales are also used in other disciplines, e.g. 

experimental psychology, human factors, and 

usability testing. Lewis further identifies criteria 

essential for robust media quality testing, such as 

reliability (measurement consistency), validity 

(measurement of the intended attribute), sensitivity 

(responding to specific experimental manipulations), 

number of scale steps, and factor analysis, which we 

will also explore in the following Sections. 

2.2. Subjective Test Design 

First and foremost, the application as well as the 

modality or modalities to be tested have to be 

decided. Single-modality tests (e.g. speech-only, or 

video-only) are generally easier to set up, and most 

subjective testing standards address single 

modalities. 

The application further determines parameters 

such as frame rate and resolution for video or 

sampling rate and frequency range for audio.  The 

range of impairments again affects the 

discriminating power of the test, as well as how the 

quality range in the test is mapped onto the rating 

scale by subjects. 

Next, it is important to know what type of test is 

most suitable for the application at hand. ITU-R 

Rec. BT.500 [5] gives some guidelines in its Table 

2, “Selection of Test Methods”. Watson and Sasse 

[6] point out that multimedia conferencing requires 

different tests than any of those specified in ITU-T 

Rec. BT.500 [5] (broadcast television) or ITU-T 

Rec. P.920 [7] (audiovisual). They also indicate that 

not all multimedia components of a particular 

content type have to be tested similarly across 

different applications. For example, in multimedia 

conferencing applications it may make sense to 

focus on the audio rather than the video, as users 

concentrate more on the former. 

Only certain test methods such as single stimulus 

continuous quality evaluation (SSCQE) are suitable 

for long clips. When interpreting data obtained from 

such studies, one must be aware of forgiveness [8] 

and recency [9] effects, where impairments that 

occurred some time ago tend to be “forgiven” or 

forgotten by the subject, while those occurring more 

recently tend to have a greater negative impact on 

the perception of video quality.  Most other methods 

(see Section 2.3) require test clips of short duration 

(typically less than 15 seconds), for which memory 

effects are not so significant. 

Another question that falls into this category is 

the general quality level of test clips. Double-

stimulus methods or forced-choice methods are 

typically more suitable for small impairments in a 

test, whereas other methods such as single-stimulus 

can be used when subjects are presented with a wide 

impairment range.  

The panel of subjects also has to be selected with 

care. Issues include: 

• How many people should be used as 

evaluators? ITU-T Rec. P.911 [10] mentions 

“the possible number of subjects […] is from 

6 to 40”; ITU-R Rec. BT.500 [5] recommends 

a minimum of 15. The number can be guided 

by the acceptable experimental error, as is 

done in medical experiments [11], or the 

desired confidence interval.  

• Is the composition of the panel representative 

of the target audience for the application of 

interest? Demographics such as gender, age, 

ethnicity, education of the subjects are 

relevant and can affect MOS [12]. 
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• Should expert or non-expert subjects be used 

[13,14]? Experts typically are in better 

agreement on the quality of a specific clip, so 

a smaller panel can suffice. At the same time, 

experts are more critical than non-expert 

subjects, which may skew ratings towards the 

lower end of the scale and fail to represent 

well the opinion of the intended target 

audience.  

The last consideration is the testing environment. 

Each modality has its own specific issues; for 

example, for speech tests, the language spoken is an 

important factor that can affect the outcome of the 

test; for audio tests, the use of headphones or 

speakers has to be considered; for video, the type 

and properties of the display can have an impact on 

ratings [15]. 

ITU recommendations specify the test 

environment in detail, assuming a controlled lab 

setup. This may be considered “unnatural” when 

compared to the way a user would typically 

experience the content (e.g. watching TV in the 

living room, having a mobile phone conversation on 

the street). Subjects may be watching content in an 

experiment that they would not normally watch 

otherwise, or the test material may not be engaging 

to viewers because of the short duration of typical 

test clips [16]. Also, subjects are less tolerant of 

errors in short sequences, and video impairments 

appear less annoying to viewers consuming content 

in more natural environments [17].  

2.3. Subjective Testing Methods 

There is a large variety of subjective testing 

methods available, described in ITU 

recommendations [5,7,10,18-20] and other standards 

documents (see Table 1). Corriveau [21] provides a 

useful introduction to the various different methods. 

The main characteristics can be summarized as 

follows: 

• Single-, double-, or multi-stimulus, i.e. the 

number of test clips to be compared in a 

single trial. Multiple stimuli may be presented 

simultaneously (e.g. side-by-side) or 

sequentially. 

• Number of times a clip is presented to 

subjects (once, twice, or even multiple times). 

• Presence of a reference clip, either explicitly 

(subjects know which one is the reference) or 

hidden. 

• Subjects may rate the test clips only, both test 

and reference clips, or the difference between 

them. 

• Depending on the interactivity of the voting 

process and setup of the test, one or more 

subjects may rate the clips in parallel. 

• Ratings may be collected time-discretely (one 

rating per clip) or continuously (one rating per 

time interval). This also determines the length 

of test clips that can be evaluated. 

• High and low anchor clips (either implicit or 

explicit) can help subjects “calibrate” their 

rating scale. 

Subjects are typically given training before the 

actual test to familiarize them with the interface as 

well as the range of impairments in the test. The 

design and execution of this training phase can also 

have an impact on a subject’s ratings. For example, 

central tendency bias (avoidance of the extreme 

rating categories) is a known problem in subjective 

experiments [22]. One of the purposes of the training 

phase is to encourage subjects to use the full range 

of the rating scale. 

Researchers have compared various testing 

methods with one another and typically found high 

correlations between them. A comparison for many 

common testing methods, including absolute 

category rating (ACR), double-stimulus impairment 

scale (DSIS), double-stimulus continuous quality 

scale (DSCQS), and subjective assessment 

methodology for video quality (SAMVIQ), is done 

in [23] using mobile video as test clips. The authors 

of that study found very high correlations between 

MOS from the different methods (linear and rank-

order correlation coefficients range from 96% to 

99%), and no significant differences between 

methods. The same study also compares the 

assessment times for each method and found the 

following ranking (from fastest to slowest): ACR, 
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DSIS, SAMVIQ, DSCQS. Finally, participants were 

asked to rate the ease of evaluation for each method, 

which resulted in the following ranking (from easiest 

to hardest): ACR-5, DSIS, SAMVIQ, DSCQS, 

ACR-11 (5 and 11 represent the number of discrete 

scale levels). It is interesting to note the large impact 

of scale on perceived ease for ACR. 

SAMVIQ is also compared with ACR in [24], 

which addresses the differences in accuracy, 

granularity, and consistency between the two 

methods for both images and video. While SAMVIQ 

is found to require fewer subjects for the same MOS 

accuracy, it also takes more time in the rating 

process because of its interactive design. 

Pinson and Wolf [25] compared both single-

stimulus and double-stimulus continuous quality 

evaluation methodologies. They also proposed a way 

to convert time-varying continuous ratings (from 

SSCQE) into discrete ratings, although this can be 

tricky due to the effects of recency and forgiveness 

mentioned earlier.  

2.4. Subjective Testing Scales 

The most common standard rating scale used to 

derive MOS values is a category rating scale with 

five discrete levels. Due to the attachment of labels 

from “excellent” to “bad” to these levels, it is not 

only non-linear, i.e. the levels are not equi-distant 

across the scale (for example, the perceptual 

distance between “fair” and “poor” is larger than the 

distance between “poor” and “bad”), but also 

language-dependent (the levels and distances 

between them depend on the language in which the 

experiment is carried out) [26,27].  

Despite the popularity of the 5-point MOS scale, 

there are other granularities, such as discrete scales 

with 7, 9, or 11 points, and (nearly) continuous 

scales. In theory, scales with higher granularity can 

result in smaller standard deviations of MOS [28]; in 

practice however, these differences turn out to be 

insignificant. For example, Huynh-Thu et al. [29] 

compared 5-, 9-, 11-point discrete and continuous 

scales for scoring video quality. They found no 

statistically significant differences between MOS or 

confidence intervals using the different scales. One 

of the reasons for this may be that people are able to 

reliably distinguish only a finite, limited number of 

levels of a certain quantity. In a classic paper, Miller 

[30] found this number to be 7±2 for many different 

types of experiments and stimuli. The potential 

higher resolution of continuous scales is lost in the 

noise due to the limits of human information 

processing capability. 

It is also instructive to compare the MOS of 

viewer groups from different labs. We use data from 

the Video Quality Experts Group (VQEG)’s FRTV 

Phase I test [31] here, which were collected in 8 

different labs from around the world. Even though 

correlations between the various labs are in the 

range of 0.9-0.95 for the most part, there are 

substantial variations, which were confirmed by an 

analysis of variance (ANOVA). In particular, 

viewers in different labs had quite differing opinions 

about the absolute quality range of the sequences 

(Figure 1); for example, a clip with an average rating 

of 30 in one lab might score 60 in another [32]. 

 

 
 

Figure 1: Comparing Difference MOS (DMOS) 

from 8 different subjective testing labs [32]. Every 

data point represents slope and offset parameters of 

a linear regression line between a pair of labs. 

Rating scale is 0-100. The slope in particular 

deviates quite far from 1, indicating differing viewer 

opinions about quality range in different labs. 

2.5. Subjective Test Results 

After a subjective test has been conducted, the 

individual ratings are averaged to obtain the MOS 

for each clip.  

Before doing this, the raw data are normally 
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screened for outlier subjects. A typical screening 

procedure is defined in ITU-R Rec. BT.500 [5]. The 

screening can be useful to detect and remove 

unreliable subjects from the data; at the same time, it 

may eliminate opinions that are just as valid as 

everybody else’s. After screening, the MOS 

inevitably represents the view of a majority. 

It is also important to remember that MOS is not a 

precise measurement – it is a statistical quantity 

(something that is often ignored when comparing it 

to objective measurements, as will be discussed 

further in Section 3). MOS is simply the average of a 

distribution of a finite number of individual ratings, 

and as such it is one statistic among many (standard 

deviation, confidence interval, kurtosis, etc.) 

describing that distribution. This is also one of the 

criticisms raised in [33], where it is shown that MOS 

implicitly assumes homogeneity among subjects due 

to the arithmetic averaging. Finally, the analysis of 

MOS data should adhere to statistical principles. For 

example, selection of parametric or non-parametric 

statistical tests should be appropriate to the type of 

data under investigation. 

In summary, MOS is not just your average noisy 

measurement; the subjectivity and other factors 

discussed in this Section add to its complexity. What 

this means for objective MOS is the topic of the next 

Section. 

 

Table 1: Overview of ITU Recommendations on subjective and objective quality measurement of speech, 

audio, video, and audio-visual signals. 

Modality Subjective Objective 

Speech  

(non-conversational) 

ITU-T Rec. P.800 (1996) 

ITU-T Rec. P.806 (2014) 

ITU-T Rec. P.830 (1996) 

ITU-T Rec. P.835 (2003) 

ITU-T Rec. P.563 (2004) 

ITU-T Rec. P.564 (2007) 

ITU-T Rec. P.862 (2001) 

ITU-T Rec. P.863 (2014) 

Speech  

(conversational) 

ITU-T Rec. P.800 (2008) 

ITU-T Rec. P.805 (2007) 

ITU-T Rec. P.1302 (2014) 

ITU-T Rec. G.107 (2014) 

ITU-T Rec. P.561 (2002) 

ITU-T Rec. P.562 (2004) 

Audio ITU-R Rec. BS.1116 (2014) 

ITU-R Rec. BS.1284 (2003) 

ITU-R Rec. BS.1534 (2014) 

ITU-R Rec. BS.1679 (2004) 

ITU-T Rec. P.830 (1996) 

ITU-T Rec. P.913 (2014) 

ITU-R Rec. BS.1387 (2001) 

Video ITU-R Rec. BT.500 (2012) 

ITU-R Rec. BT.1663 (2003) 

ITU-R Rec. BT.1788 (2007) 

ITU-R Rec. BT.2021 (2012) 

ITU-T Rec. J.140 (1998) 

ITU-T Rec. J.245 (2008) 

ITU-T Rec. P.910 (2008) 

ITU-T Rec. P.913 (2014) 

ITU-R Rec. BT.1683 (2004) 

ITU-R Rec. BT.1866 (2010) 

ITU-R Rec. BT.1867 (2010) 

ITU-R Rec. BT.1885 (2011) 

ITU-R Rec. BT.1907 (2012) 

ITU-R Rec. BT.1908 (2012) 

ITU-T Rec. J.144 (2004) 

ITU-T Rec. J.246 (2008) 

ITU-T Rec. J.247 (2008) 

ITU-T Rec. J.249 (2010) 

ITU-T Rec. J.341 (2011) 

ITU-T Rec. J.342 (2011) 

ITU-T Rec. P.1202 (2012) 

Audio-visual 

(non-conversational) 

ITU-T Rec. P.911 (1998) 

ITU-T Rec. P.913 (2014) 

ITU-T Rec. P.1201 (2012) 

Audio-visual 

(conversational) 

ITU-T Rec. P.920 (2000) 

ITU-T Rec. P.1301 (2012) 

ITU-T Rec. G.1070 (2012) 
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ITU-T Rec. P.1302 (2014) 

ITU-T Rec. G.1091 (2014) 

 

3. Objective MOS 

Although subjective quality tests are essential to 

understanding customer opinions of media, they are 

costly and time-consuming to perform, and any 

single test is limited in scope. As a result, objective 

quality models are an important alternative to 

subjective tests, particularly for media quality 

benchtesting and in-service monitoring, where 

subjective tests are impractical. Various types of 

objective models are known, including arithmetic 

models such as peak signal-to-noise ratio (PSNR) or 

mean squared error (MSE), statistical models such 

as structural similarity (SSIM), parametric network 

planning models (e.g., ITU-T Rec. G.107 [34], 

G.1070 [35]) and perceptual models (see [36] and 

Table 1 for an overview of standards activities, and 

[37-39] for recent surveys of quality metrics). This 

discussion is limited to perceptual models, because 

they are designed to emulate subjective quality 

ratings, and as such output a predicted MOS.  

Naturally, there is a close relationship between 

subjective assessment and objective measurement. 

Objective models are trained and tested against 

media for which subjective scores are available. 

Consequently, all the considerations discussed in the 

previous Section affect objective MOS as well. The 

relationship is established through a process of 

tuning (a.k.a. calibration or training), where the 

model outputs are aligned with subjective MOS as 

closely as possible. Once a model has been trained, 

it is validated (a.k.a. testing or benchmarking), 

usually again with subjective MOS data. Tuning and 

validation are not only the most common uses of 

(subjective) MOS, but also the most suitable ones 

(cf. Table 2). A good overview of various methods 

along with practical guidelines for the calibration, 

validation, and comparison of objective models can 

be found in [40].  

 

Table 2: Summary of MOS suitability, limitations, 

and alternatives for different applications. 

Application MOS 

Suitability 

MOS 

Limitations 

Alternatives 

to MOS 

Metric 

Tuning & 

Validation 

(Section 3) 

Good Positive-

only test 

Scalar value 

Stress testing 

Failure 

characteristics 

Quality 

Monitoring 

(Section 4.1) 

Good Thresholds Acceptability 

JND 

Fault 

Isolation 

(Section 4.2) 

Poor Global 

measure 

Multi-

dimensional 

quality 

Service 

Level 

Agreements 

(Section 4.3) 

Poor Short-term 

quality 

One 

impairment 

per time frame 

Mean time 

between 

failures 

Long-term 

quality tests 

 

3.1. Tuning / Calibration 

As with other measurement devices, there is a 

need to calibrate objective quality assessment 

algorithms in order to obtain meaningful and reliable 

results. Calibration is a comparison between 

measurements – one of known magnitude or 

correctness made or set using one method (also 

known as a reference) and another measurement 

made using a similar, second method. In the case of 

objective models, this is done by comparing 

objective MOS predictions with subjective MOS, 

ideally for a large database of media. The aim is to 

match both as closely as possible. This has a number 

of implications for the meaning and usability of 

objective MOS. 

One important issue here is that the scale of 

objective MOS is generally different from subjective 

MOS. The scale of subjective MOS is determined 

primarily by the range of content quality and 

impairments present in a given subjective test. The 

limits of the scale range are set through training of 

the subjects using anchor clips. The scale of 

objective MOS on the other hand can in principle be 

infinite. 
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The MOS tuning process therefore focuses on 

making sure the trends and relationships between 

subjective MOS and the MOS predicted by an 

objective model match well. This is typically done 

by evaluating correlations between those two 

datasets. High correlations mean a good match has 

been achieved (while there is no generally accepted 

level for what constitutes a sufficiently high 

correlation, one common benchmark is the 

correlation of PSNR and MOS for the same dataset 

[31]). However, correlations are independent of 

range and scale and do not give any indication about 

how well subjective and objective MOS values 

correspond in absolute terms.  

As a result, fitting functions are often used to not 

only maximize the linear correlation, but also to 

match the range of objective and subjective MOS 

scales. Both linear and non-linear (e.g. polynomial 

or logistic) functions are commonly applied in this 

process, the main argument for the latter being that 

non-linear functions can compensate for any 

saturation of subjective MOS towards the ends of 

the scale, an effect that objective MOS would not 

necessarily exhibit. This fitting allows the 

computation of the residual prediction error of a 

model, which is another common performance 

criterion.  

A question remains whether the fitting function 

should be considered part of the model (in other 

words, generic), or part of the data (i.e. specific to a 

given set of subjective tests). As an example, ITU 

specified a mapping function for transforming the 

raw result scores of its method for perceptual 

evaluation of speech quality (PESQ) to a linearized 

MOS in a separate recommendation [41].  

To summarize, it is unlikely that a specific model 

would be able to predict subjective MOS values for 

any given subjective experiment without some 

adjustment of the objective MOS scale via a fitting 

function. In practice, this type of calibration is 

generally required for any model in an application 

where it has not been used or tested before. 

3.2. Validation / Testing 

Although recent novel methods for objective 

quality assessment [42,43] have been able to reduce 

or eliminate the need for using subjective MOS in 

training (but not validation of course), validation and 

testing of objective models is still an essential part of 

the work. Validation of objective models, such as 

[44] or the tests performed by VQEG, is based on a 

comparison of objective model outputs with 

subjective quality scores for a set of media clips. 

VQEG validation tests are used by the ITU to 

produce new standardized objective measurement 

methods (cf. Table 1); an alternative streamlined 

approach to validating objective models has also 

been proposed [45].  

An important issue is that – as mentioned earlier – 

subjective MOS is not a precise number, but a 

statistical measurement. As long as the predicted 

MOS lies within the confidence interval of the 

subjective MOS value, it can be considered correct. 

This means that not only any kind of performance 

evaluation criterion (correlation, residual error, etc.) 

would have to come with a confidence interval, but 

also objective MOS itself, yet model performance or 

objective measurements are rarely reported in this 

way.  

For MOS to be used successfully in this scenario, 

it cannot be treated as a simple scalar value. Often 

we rely on the assumption that there should be some 

homogeneity or correlation in judgments from 

different subjects, but that is not at all clear [33,46]. 

It is true to some extent if the content is limited to a 

single type of distortion; a slight broadening of the 

distortion characteristics results in much more 

complexity and thus disagreement between subjects. 

Therefore, it is important to take the disagreement 

and sometimes conflicting opinions of subjects into 

account.  

Traditional linear regression or root mean squared 

error (RMSE) calculations make additional 

problematic assumptions: they assume that residuals 

have a Gaussian distribution and equal variance. 

Because of the discrete and limited MOS rating 

scales as well as human nature, this is generally not 

the case for subjective quality ratings [28]; in fact, 

they follow an ordered multinomial distribution [47]. 

Therefore, it is preferable to adopt approaches that 

do not rely on these assumptions. A simple way of 

achieving this is using weights that are equal to the 
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reciprocal of the variance of each measurement 

(MOS) for each test clip; this is also referred to as 

variance-weighted regression, a special case of 

generalized least squares [47]. Note however that the 

accuracy of this method depends on the accuracy of 

the individual variance estimates [48]. 

More advanced statistical tools such as the 

Generalizing Linear Model (GLZ) can provide an 

additional benefit: they do not assume an equi-

distant rating scale, which is another flawed 

assumption for most MOS scales (see Section 2.4). 

The GLZ model yields a probability for each 

possible rating category, which is much more 

insightful than MOS [47]. 

Another such approach addressing this issue [49] 

proposes a rank agreement measure (RAM) from a 

geometric representation of subjects’ rank order 

preferences. The RAM can be calculated for a 

subjective or an objective rank. The approach is 

based on the premise that the qualification of 

objective algorithms should depend on the level of 

agreement between subjects. They identify the mean 

Spearman rank as a useful RAM and suggest that an 

algorithm for objective quality prediction can be 

approved if it is better than the mean RAM of 

subjects. 

Wu, Hu, and Gao [50] represent the visual quality 

of images as a distribution rather than a single scalar 

value. They propose a structural regression 

algorithm to cope with learning and predicting this 

data. Furthermore, they introduce a reliability-

sensitive learning method, which weights quality 

ratings by their reliability (essentially the number of 

ratings per sample), as well as a refinement strategy 

that iteratively improves samples with lower 

reliability by propagating information from samples 

with higher reliability.  

Completely different methodologies to validating 

objective metrics have been proposed recently, using 

approaches akin to software testing, in that they aim 

to expose “bugs.” i.e. errors, vulnerabilities, and 

failure characteristics, of a quality metric, rather than 

to demonstrate that it satisfies certain specifications 

[51-53].  Reibman [54] generalizes these approaches 

to define subjective tests with a high likelihood of 

exposing misclassification errors of objective quality 

metrics, whereas conventional subjective tests 

generate such samples only randomly. These 

misclassifications can be categorized as false 

ranking, false differentiation, or false tie. The 

algorithm proposed is able to determine the best 

images for a pairwise subjective test for this purpose 

using a set of existing objective metrics. This is 

particularly useful for comparing the accuracy of 

objective metrics across distortion types or reference 

samples. 

Other examples of such approaches include 

checking the output for content with the same 

PSNR, distinguishing un-degraded from heavily 

impaired images, simple transformations such as 

cropping, monotonically increasing distortion levels, 

etc. [53]. One of the advantages of these checks is 

that they require little or no subjective testing. 

Unfortunately, such tests are severely under-utilized 

in objective model validation; most still rely 

exclusively on traditional (positive-only) regression 

approaches. 

4. MOS Applications 

In this Section, we discuss various practical 

applications and uses of MOS as well as its 

limitations and suggest possible alternatives. We 

have grouped them into three areas, based on the 

main use cases that have emerged from numerous 

discussions with media professionals and actual 

users of quality of service (QoS) and/or quality of 

experience (QoE) tools, for example codec 

designers, service providers, telecom operators, and 

other engineers. The application areas we consider 

here are quality monitoring, fault isolation, and 

service level agreements (cf. Table 2). The 

nomenclature may be service provider oriented, but 

the applications are easily translated to other use 

cases. 

4.1. Quality Monitoring and Alerts 

The purpose of quality monitoring and alerts is to 

notify users (e.g. operations and support teams) of 

potential problems. For these notifications to be 

useful, they need to be near-instantaneous, i.e. on the 
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order of a few seconds. For an operator, the goal of 

monitoring is to pre-empt customer helpdesk calls, 

as those increase operational costs.  

MOS is relatively well suited for this type of 

application (at least in theory), because (a) MOS 

represents the overall quality and captures various 

possible problems, and (b) a MOS value can be 

produced for short segments of content (e.g. a few 

seconds), which makes it possible to capture short-

term quality fluctuations and keeps delays low. 

However, for any given scenario in which MOS is 

reported, it is unclear what threshold values should 

be applied to identify problems or determine 

acceptability. Which MOS value is good, or good 

enough? As an example, [55] suggests values 

between 3 and 4 for IPTV applications. But can this 

threshold be static, i.e. a universal single value for 

all models and applications? For example, it may be 

argued that the quality of high-definition (HD) 

content with a MOS of 4 is not the same as standard-

definition (SD) content with the same MOS. The 

subjective scores would be modified by 

expectations, and objective models would take this 

into account through tuning. In other words, the 

same MOS may actually mean something different 

in terms of absolute quality. 

Unfortunately, service providers often have 

conflicting expectations: MOS values should scale 

independently of the resolution (e.g. both 

unimpaired SD and HD video should have a MOS of 

4.5 or above), while MOS for HD should generally 

be higher than MOS for SD, which obviously cannot 

be achieved with a single MOS scaling or threshold. 

Differences in MOS thresholds can be due to two 

things: 

1. MOS scales are dependent on the range of 

qualities present in a given subjective test. 

Speech quality is quite well-defined, and 

therefore its range is easier to cover; for video 

on the other hand this is more complex. In a 

hypothetical experiment that includes both 

SDTV and HDTV content, for example, all 

HDTV content may be rated above 4, for 

example, whereas in an HDTV-only 

experiment, it is likely to cover a wider range. 

Similar things apply to content type (e.g. 

sports vs. cartoon), bitrates, or any other test 

parameters. Choosing a suitable MOS 

threshold therefore means having to match 

the scale used in the original experiment(s) 

with the actual content being monitored. 

2. There is also a commercial aspect to the 

selection of a MOS threshold. Service 

providers have different priorities for 

different services and may decide to set very 

different quality (bandwidth) targets for each 

service offering (channels or programs). A 

high-value subscription-based sports 

transmission or prime-time movie will 

typically be shown at higher quality than a 

morning cartoon or late-night reruns. 

Different MOS thresholds would have to be 

applied in these cases. 

 

 

Figure 2: Service acceptability mapping functions. 

The percentage of users experiencing “good or 

better” (solid curve) and “poor or worse” (dashed 

curve) service are obtained from the R-Factor, an 

indicator of voice transmission quality [34]. 

 

Another problem is comparing MOS results across 

different studies or results from objective models 

that are paired with different subjective tests, which 

should be avoided and discouraged. Different studies 

use different equipment, type of content, quality of 

source content and impairments of that content, etc. 

[16,56]. ATIS 0800008 [56] describes such 

parameters that need to be reported as part of a 
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subjective tests and objective models; ITU-T Rec. 

P.800.2 [57] serves a similar purpose.  

One of the issues is that MOS measures the 

amount of satisfaction rather than the acceptability 

or acceptance of a service. In voice quality, “Good 

or Better” (GoB) has been used as a basis for 

acceptability [34]; in a perhaps overly simplistic 

manner, it is derived directly from a mapping of 

MOS values (see Figure 2). De Koning et al. [58] 

find that video requires a different (and possibly 

content-dependent) mapping function. Jumisko-

Pyykkö et al. [59] even recommend a bi-dimensional 

approach to quality evaluation for this purpose, by 

considering satisfaction and acceptance separately. 

Another useful alternative here may be one that 

does not focus on quality but on noticeable 

impairments. One such technique is based on just 

noticeable difference (JND), as mentioned briefly in 

Section 2.1. The JND can be determined for 

different modalities and any kind of impairment. 

JND is the impairment level at which test subjects 

detect a difference between two stimuli some 

proportion of the time. Depending on the 

psychophysical method used, the difference is 

typically considered noticeable when subjects report 

it in 50% or 75% of the tests (see Figure 3). This 

“just noticeable” impairment level is defined as 1 

JND; a higher number of JNDs means higher 

impairment levels and a poorer quality [60]. JND 

has been defined as a subjective method and has 

been used extensively in psychophysical studies. 

There are also objective models of JND [61]. The 

advantage of JND measurements is that – contrary to 

MOS – they are in absolute and statistically 

meaningful units and are less likely to be subject to 

context effects [60].  

JND is very reliable at or near the perceptual 

threshold, which makes it useful for applications 

operating in this range (e.g. encoder tuning). 

However, it becomes less intuitive for larger quality 

differences, at which many commercial services 

operate. Multiple units of JND can still be related to 

a certain likelihood or percentage of observers 

detecting a difference, but they are not easy to 

interpret or use in practice. Maximum likelihood 

difference scaling (MLDS) was proposed as an 

experimental methodology and model to map 

difference measurements of the kind “difference 

between A and B is greater/smaller than the 

difference between C and D” to a supra-threshold 

difference scale [62], which has been successfully 

applied to image compression. 

 

Figure 3: Typical outcome of an experiment for 

establishing the just-noticeable difference (JND) 

level (dashed line, at 50% of correct responses). 

Circles: empirical measurements; curve: fitted 

psychometric function. 

4.2. Fault Isolation 

It is generally not enough to establish the 

existence of a problem; it is necessary to identify the 

root cause in order to fix it. Unfortunately, MOS 

tells users little about the causes of a problem. 

Without additional measurements or detailed 

information, fault isolation or troubleshooting is 

nearly impossible.   

Therefore it is important to consider the multi-

dimensional aspect of media quality and explicitly 

measure and report the different dimensions. 

Virtanen et al. [63] indicate that quality is not a 

“single monotone dimension”. Sen [40] speaks of 

dimensions in a “quality space”. Preminger and Van 

Tasell [64] indicate that speech quality is of a multi-

dimensional nature – with uni-dimensional methods 

the measurements are essentially judgments, where 

one or several of the individual quality dimensions 

may influence the subject’s preference. A number of 

studies emphasize the need to find the quality 

variables of each dimension and to understand the 

relationship and weights of each of these dimensions 
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[27,46,65]. Although there has been quite a bit of 

research into the multiple dimensions of quality, the 

use of multi-dimensional models for quality 

assessment for the various modalities is still 

relatively immature.  

4.2.1. Multi-dimensional Quality Perception 

To determine the perceptual dimensions of 

quality, two approaches are commonly used: 

1. Scaling perceptual differences of pairwise 

stimuli, which are then mapped into a 

multidimensional space using multi-

dimensional scaling (MDS) procedures 

[66,67]. 

2. Asking subjects to rate stimuli on a set of 

bipolar scales (e.g. warm-cold) according 

to the semantic differential (SD) [68], and 

reducing the dimensionality by means of 

factor analysis. 

An important difference between these two 

approaches is that SD presents predefined 

dimensions and scales to subjects, whereas 

perceptual difference scaling with MDS does not. 

Therefore, the set of attribute scales for SD has to be 

chosen with care, often through pilot tests, and their 

number can be rather large (see below). SD results 

are usually easy to interpret; however, if a certain 

dimension is not part of the pre-defined set, this 

information is lost. MDS on the other hand can 

reveal “hidden” quality dimensions, but can be 

harder to interpret; also, a full pairwise test is often 

not practical because of the large number of possible 

stimulus pairs [69]. 

For semantic differential, it might be reasonable to 

assume that the most apparent criterion for a user is 

a good-bad dimension. However, for the purpose of 

finding perpendicular dimensions reflecting different 

features that together form the integral quality 

judgment, it can actually be counterproductive to 

consider a separate dimension reflecting integral 

quality itself [70]. 

Note that MOS methods and scales can still be 

used to evaluate individual quality dimensions; in 

other words, appropriately instructed subjects can be 

asked to rate a specific quality dimension on a MOS 

scale (see Section 2.4), and the averaged responses 

across subjects then represent MOS for that 

dimension. 

Ghinea and Thomas [71] define Quality of 

Perception (QoP), which includes a user’s 

satisfaction with multimedia clips as well as a user’s 

ability to understand, synthesize and analyze the 

information content of such presentations. This may 

be considered a two dimensional modeling of video 

quality.  

In an effort to minimize the sampling error 

associated with individual differences in subject’s 

taste or preference, Voiers [65] designed the 

Diagnostics Acceptability Measure (DAM). DAM is 

a variation of the SD technique and uses different 

attributes of a signal. DAM is a subjective measure 

of quality, based on the ability of a group of listeners 

to detect different types of distortions. It combines 

both direct (isometric) and indirect (parametric) 

approaches to acceptability evaluation. As a result, 

DAM is time consuming and requires trained 

listeners. DAM scores are also used by Sen [46] in a 

principal component analysis (PCA) and MDS to 

show the multi-dimensional nature of speech.  

Wältermann [70] identifies quality dimensions of 

speech using MDS. Starting from 13 and 28 

antonyms and corresponding bipolar scales (see 

Figure 4), he finds three common dimensions, 

namely discontinuity, noisiness, and coloration, for 

both narrowband and wideband speech transmission, 

with an additional fourth dimension (high-frequency 

distortion) specific to the wideband case. These 

dimensions capture a wide variety of 

conditions/distortions; furthermore, many distortions 

can intuitively be assigned to one or more specific 

dimensions (e.g. packet losses to discontinuity). A 

simple linear model is able to capture the 

relationship between perceptual dimensions and 

integral quality quite well.  

 
Interrupted        Continuous 

Distant        Close 

Crackling        Not crackling 

Thin        Thick 

Not noisy        Noisy 

Muffled        Not muffled 
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Shaky        Steady 

Indirect        Direct 

Dark        Bright 

Unintelligible        Intelligible 

Not hissing        Hissing 

Clear        Unclear 

Distorted        Undistorted 

Figure 4: Semantic differential (SD) scales and 

corresponding antonyms used in a narrowband 

speech experiment [70]. 

The findings clearly depend on the modality and 

the distortions present in the experiment. A review 

of 9 studies of quality dimensions of synthetic 

speech concluded that the 5 universal quality 

dimensions were naturalness, prosodic quality, 

intelligibility, disturbances, and calmness [69]. 

Watson and Sasse [6] use quality dimensions to find 

an appropriate scale. An example quality dimension 

for multimedia conferencing speech is “choppiness”, 

which uses terms such as ‘broken’, ‘cut up’ and 

‘irregular’. In video, many perceptual dimensions 

have been defined; for example, block distortion, 

blurring, jerkiness, etc. [72]. 

Especially for MDS-based approaches, it can be 

useful to combine conventional quantitative psycho-

perceptual evaluation with a descriptive qualitative 

evaluation based on the individual’s own 

vocabulary, which can make it easier to interpret the 

resulting quality dimensions. Interpretation-based 

quality (IBQ) [73] and open profiling of quality 

(OPQ) [74] are good examples of such approaches.  

Egger et al. [75] on the other hand combine 

semantic differential scores for a variety of attributes 

and MOS scales for different questions in a test on 

interactive video communication; by means of PCA, 

they find only a weak relation between subject 

responses on those two scales and highlight certain 

limitations of SD in this scenario. 

4.2.2. Multi-dimensional Quality 

Measurement 

Perceived (subjective) and measured (objective) 

dimensions of quality may be different, because they 

have somewhat different purposes. Perceived 

dimensions tell us about the criteria people use to 

rate media quality. Measured criteria are there to 

break quality down into various components (e.g. 

impairments) from a measurement perspective [76], 

but more importantly perhaps, they should also 

reflect the various faults and impairment sources we 

are trying to isolate.  

In practice, many objective quality models 

metrics compute and/or analyze a multitude of 

features and/or artifacts before coming up with an 

overall estimate of quality. This is especially true for 

those that do not rely on a reference – see e.g. [77] 

for a review of no-reference image and video quality 

metrics. They often rely on a hierarchical analysis of 

measurements, as shown in Figure 5: various 

network- or media-level parameters and 

measurements form the basis for Key Performance 

Indicators (KPIs). KPIs are aggregated into Key 

Quality Indicators (KQIs), which in turn form the 

basis for Customer Experience Indicators (CEIs). 

While numerous individual KPIs, KQIs, and CEIs 

have been defined by various standards 

organizations, the challenge is establishing reliable 

integration functions or mappings from one level to 

the next. 
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Figure 5: Hierarchy of quality assessment indicators. 

 

In this respect, the issue of fault isolation has also 

been addressed by the networking community [78], 

using multi-resolution data analysis and statistical 

data mining techniques to identify problems and 

diagnose their root causes in large video delivery 

networks [79]. However, these approaches have two 

shortcomings. First, they generally require 

instrumenting the system at all points and 

components along the distribution chain, which can 

be prohibitive in practice. Second, they have mostly 

focused on network and device performance, and 

have given only very limited consideration to media 

quality.  

The importance of multidimensional analysis for 

quality assessment is also highlighted in a study by 

Keimel et al. [80]. Their approach treats the human 

visual system as a black box and derives quality 

from a number of features, without making any 

assumptions on their relationships. A similar 

approach is presented in [81] by constructing a k-

dimensional Euclidean QoE space, where each 

dimension represents a parameter that may impact 

video quality. In a subjective test for a given set of 

parameters and values, “reference points” are 

obtained, each with a MOS. These allow inferring 

the MOS for a new set of parameters using a simple, 

lightweight search algorithm. Another study 

formulates multidimensional video quality 

assessment as a transformation between a 

multidimensional feature space and a quality space, 

where each space itself may be multi-dimensional 

[82]. 

The research on the multi-dimensional nature of 

media quality has recently been picked up by 

standards bodies as well. ITU-T Study Group 12 is 

studying multi-dimensional speech quality analysis 

from both subjective and objective perspectives 

(referred to as work items P.AMD, P.MULTI, and 

P.TCA).  Likewise, VQEG is working on a project 

on the monitoring of audio-visual quality by key 

indicators (MOAVI for short) to understand and 

measure the effects of different impairments on 

quality.  

4.3. Service Level Agreements 

A Service Level Agreement (SLA) defines the 

level of service delivered to a customer in terms of 

contractual metrics; often, penalties can be imposed 

in case of non-compliance. A service provider (SP) 

may be interested in using MOS to offer/maintain 

quality-based SLAs with content providers and/or 

customers in order to differentiate pricing plans 

based on different levels of quality. They may also 

want to compare the quality of their service with the 

competition. For this type of application, users 

typically look at long-term quality behavior and 

QoE 

Customer Experience 

Indicators (CEI) 

Key Quality Indicators (KQI) 

Key Performance Indicators (KPI) 

Network-/media-level parameters and measurements 
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trends, on the scale of a single program all the way 

up to weekly or monthly trends. 

The Tele Management (TM) Forum has published 

a comprehensive guidebook on service level 

agreements [83]. It has also defined a hierarchy 

among KPIs, KQIs, and SLAs, asserting that SLAs 

can be defined in terms of product KQIs (or CEIs). 

Based on this hierarchy, Seo et al. [84] propose an 

architecture for defining and managing SLAs as well 

as detecting violations. 

As Sullivan et al. [16] point out, designing and 

maintaining an infrastructure that aims for a service 

that is constantly scoring a maximum value is too 

costly and does not provide sufficient noticeable 

benefits. Unfortunately, one major problem with 

MOS is that little is known on how much and what 

type(s) of variations are tolerable. A typical 

operational/engineering approach is the use of “one-

impairment-per-time-frame.” e.g. 1 hour or 4 hours 

[85,86]. However, there are a number of issues with 

this approach, such as: 

• Do customers evaluate their service or content 

in such long, defined time periods?  

• How many error-free and non-error free 

intervals should be considered as part of these 

longer observation periods? Setting a fixed 

value would have to be paired with 

appropriate statistical constraints. 

• Do users rate noticeable impairments 

similarly, independent of time of day, type of 

content, level of interest, etc.? 

• Will users rate impaired content differently 

when it impacts a critical moment in a 

program as opposed to a non-critical one?  

Some actual figures about the number of artifacts 

perceived by consumers and their acceptability are 

found in [87].  

The Alliance for Telecommunications Industry 

Solutions (ATIS) IPTV Interoperability Forum (IIF) 

has identified desirable features that should be 

considered for in-service perceptual quality 

measurements, including frequency of impairments; 

duration of each impairment; how bad the 

impairment is (content sensitive perspective); what 

impairment it is. With these features and the 

previously mentioned issues, ATIS-0800041 [55] 

informally suggests a two-stage process for defining 

threshold “severities” for IPTV applications. The 

first stage involves defining the severity level of 

each error, depending on its duration and extent. The 

second stage aggregates the frequency and severity 

levels of multiple errors into an overall trouble level. 

The ITU has been building an arsenal of 

subjective methodologies for specific applications 

over the last several decades.  However, they are all 

based on controlled settings in a lab environment. 

Sullivan et al. [16] claim that testing in isolation 

according to the ITU standards is “appropriate for 

situations where reliability and small error variance 

are important” and that “when looking at electrical 

components, psychophysical approaches work 

perfectly well”. But none of these methods are 

practical for determining the quality that has to be 

maintained in a service provider network.  They 

argue that a human factors approach is more 

appropriate in situations where SPs are planning for 

how much bandwidth is needed per second to obtain 

an acceptable level of video quality, as well as how 

video quality compares among different SPs.   

Staelens et al. [17] modified some of the 

standardized subjective tests by replacing short 

duration test clips with long naturally occurring high 

value (high motion) content, a living room 

environment as opposed to a controlled lab 

environment, and a more granular scale to better 

measure quality differences at the higher end of the 

scale. Specifically, they compared responses from 

subjects to frame freezes and blockiness artifacts 

from long tests with entire movies to those in 

traditional short tests. However, they eventually 

translate the results back to the popular 5-point 

scale.  

One interesting alternative was proposed by 

Suresh and Jayant [88]. They describe an “intuitive, 

global” subjective metric called mean time between 

failures (MTBF) that represents how often visual 

artifacts are observed by a typical viewer. In 

addition, an “instantaneous” metric called 

‘Probability of Failure’ (PFAIL) is introduced, 

which reflects the fraction of viewers that find a 



16  Multimedia Systems 

 

given video portion to be within acceptable quality 

levels. MTBF links artifact occurrence frequency 

and duration to video quality; if an artifact is 

persistent, the viewer simply continues to push a 

button, which gives an indication of how bad a 

visual impairment is. This method does not 

differentiate between “amounts” of impairments 

(small or large visible artifact), the location of the 

impairment with respect to the perceived content 

(center, edge/corner), or types of impairments. 

MTBF is calculated over a number of sequences as 

the inverse of the average PFAIL.  

4.4. Other Considerations 

When monitoring and fault isolation methods are 

in place, it seems natural to use MOS measurements 

as the basis for any adjustments to the system in 

order to optimize media quality, i.e. using MOS 

within a feedback loop. From the objective 

perspective, the topic of quality control of multistage 

systems has been studied in industrial process 

engineering [89]; media distribution can be 

considered a special case of such systems. The 

problem here is similar to the application of MOS 

for fault isolation (except the time scale is different). 

Without understanding the various quality 

dimensions and impairments, it is hard (albeit not 

impossible) to tweak the right parameters for 

improving overall quality. 

From a service provider’s perspective, 

“maximizing QoE” may have different objectives; 

these could be maximizing overall QoE for multiple 

users in a network, maximizing the QoE of certain 

individual users or groups, maximizing the number 

of “satisfied” users, etc. In this respect, overall MOS 

can lead to unfairness among customers, depending 

on how it is used [33]. In practice, instead of 

considering average QoE, service providers are more 

interested in customers with low perceived quality, 

who are at risk of switching. If monitoring (see 

Section 4.1) or optimization methods rely on MOS, 

the result may be over-provisioning, because users 

who already receive good quality are given even 

better service merely as a side-effect of improving 

the quality for those with the worst QoE. To remedy 

this problem and improve QoE management, Xu et 

al. [33] propose a MOS based on utility functions, 

which have been used for rate control in networking 

research. 

Finally, how broad and encompassing can or 

should MOS be? Knoche et al. [90] highlight several 

properties of MOS-based approaches that may prove 

problematic when used in certain applications. They 

indicate that current subjective methods do not 

register some aspects of the subject’s audiovisual 

system, such as unconscious effects; differences in 

judging, mood, and a-priori estimates. In addition, 

they claim that MOS allows for ambiguous results, 

which leads to complications in using MOS. To 

overcome these pitfalls, they introduced Task 

Performance Measures (TPM), which is a set of 

tasks such as repetition, memorization etc. that 

subjects perform; these tasks can be measured 

objectively. One example they offer is that they can 

measure the degradation in performance by wrong 

answers such as those introduced by McGurk effects 

[91], whereas a MOS score might miss this 

degradation. 

Mullin et al. [27] indicate that standardized 

subjective methods are “cognitively mediated” and 

claim that other variables can influence the user’s 

assessment of quality. They use a traditional Human 

Computer Interaction (HCI) evaluation framework 

that considers task performance, user satisfaction, 

and user cost. Likewise, Laghari et al. [92] present a 

comprehensive framework that considers factors 

from the human domain (demographics, 

expectations, role), contextual domain (e.g. social 

context, device, environment), technical domain 

(e.g. design, features), and business domain (e.g. 

brand, pricing). When quality or QoE is defined in 

such broad terms, it becomes more and more 

difficult to describe them with a single number such 

as MOS. Similar issues around QoE are explored in 

[93]. 

5. Summary and Conclusions 

MOS is a wide-spread and popular measure of 

media quality. Large numbers of subjective MOS 

data [94] and objective quality metrics [37-39] have 

been made available. At the same time, MOS values 
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are prone to misuse or misinterpretation. Choices 

made in the design of subjective experiments on 

media quality have an important influence on MOS 

values and need to be taken into consideration when 

analyzing and using MOS data. Objective media 

quality metrics rely on data from those subjective 

experiments for tuning and validation, and are 

therefore affected by the same choices and factors.  

We have presented a number of important 

methods and practical applications of MOS, its 

various respective limitations, and some alternative 

approaches that have been proposed to overcome 

those (cf. Table 2). Many of these alternatives are 

supported by solid theoretical foundations and 

numerous studies; however, their practical 

application is still lacking. For example, while 

multidimensional quality is a well-known concept, 

with a multitude of subjective experiments and 

available mathematical tools, complemented by an 

equally large number of objective models that rely 

on quantifying various distortions, it is still nearly 

impossible to link some of these quality dimensions 

to actual faults or root causes in a complex system. 

An essential task for the media quality research 

community is to provide relevant guidance for users 

of MOS to enable them to make meaningful 

measurements and interpret the results correctly. 

Educating users of MOS about its limitations is 

particularly important. Standards organizations also 

have to play their part here. Even in the research 

community, further education efforts are necessary 

to overcome issues such as the tendency to rely on 

simplistic validation methods of objective models 

that are based on problematic assumptions.  

Finally, we believe that more research efforts need 

to be directed towards addressing practical 

applications and system issues, i.e. answering 

questions such as how quality measurements can be 

used to trigger alarms, how those alarms can help 

identify and fix quality problems, or how 

impairments should be aggregated over longer 

pieces of content. Alternative subjective and 

objective quality indicators that are able to address 

some of the shortcomings of MOS can put a more 

versatile set of quality measurement tools at users’ 

disposal, from which they can then pick the most 

appropriate ones. Ultimately, what matters is not 

MOS, but managing QoE. 
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