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Analysis of Public Image and Video Databases
for Quality Assessment

Stefan Winkler

Abstract—Databases of images or videos annotated with sub-
jective ratings constitute essential ground truth for training,
testing, and benchmarking algorithms for objective quality as-
sessment. More than two dozen such databases are now available
in the public domain; they are presented and analyzed in this
paper. We propose several criteria for quantitative comparisons
of source content, test conditions, and subjective ratings, which
are used as the basis for the ensuing analyses and discussion. This
information will allow researchers to make more well-informed
decisions about databases, and may also guide the creation of
additional test material and the design of future experiments.

Index Terms—Image and video quality assessment, subjective
experiments, peak signal-to-noise ratio (PSNR), Mean Opinion
Score (MOS)

I. I NTRODUCTION

GROUND truth is one of the most important and useful
components for the evaluation and benchmarking of

new algorithms. In the field of image and video quality,
ground truth means databases of test clips annotated with
subjective ratings. The lack of annotated databases used tobe
a major hurdle for researchers working on quality assessment
algorithms. Even uncompressed video content was hard to
find. In recent years, an increasing a number of databases have
been released into the public domain, to the point where it
has become be hard to keep track of them or to choose the
most suitable one. For this paper, we have compiled a list of
27 image and video databases that are publicly available and
relevant to quality assessment.

Comparing databases using the same criteria is helpful for
model developers, who can make a more informed decision
about which databases may be most suited for their specific
benchmarking or other needs. Furthermore, by providing an
overview of what is currently available in a uniform frame-
work, this study highlights areas where additional databases
are needed and where researchers may want to focus in the
design of future experiments.

The paper is organized as follows. Section II provides an
overview of available image and video databases annotated
with subjective quality ratings as well as several additional
databases of relevance for the quality assessment community.
Section III proposes various criteria for quantitative analyses
of source content, test material, and subjective ratings, which
are then used for comparing databases. Section IV reviews the
analysis findings and discusses areas for database improvement
and future work. Section V concludes the paper.
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II. DATABASES

This section presents 27 image and video databases that
are annotated with subjective quality ratings. An overview
of the test material in each database, including the number
of sources and test conditions, resolution and format, can be
found in Table I. Experiment details, such as subjective testing
methods and data, subjects, viewing setup, are provided in
Table II. Note that many databases do not provide all these
details, as evidenced by the empty table entries. Additional
database-specific information, including references and ashort
description of test conditions, is given in the following. A
selection of other databases that are of interest to the image
and video quality research community are also mentioned.

The author maintains an up-to-date list of links to these and
other databases on his web site [3].

A. Grayscale Images

• A57 Database [4]. Small database with various distortion
types (compression, blur, noise).

• IRCCyN/IVC Watermarking Databases [5]–[7]. Four
separate databases created by embedding watermarks
with different algorithms. Includes Broken Arrow (BA),
Fourier Subband (FSB), Enrico, and Meerwald (MW)
databases.

• Wireless Imaging Quality (WIQ) Database [8], [9]. JPEG
compressed images and distortions introduced by a sim-
ulated wireless link.

B. Color Images

• Categorical Subjective Image Quality (CSIQ) Database
[10], [11]. Distortions include JPEG and JPEG2000
compression, global contrast decrements, additive pink
Gaussian noise, and Gaussian blur.

• IRCCyN/IVC Image Quality Database [12], [13]. Test
conditions include JPEG, JPEG2000, and LAR (Locally
Adaptive Resolution) compression as well as blur.

• IRCCyN/IVC 3D Image Quality Database [14], [15] was
the first public-domain database on 3D image quality. Test
conditions include JPEG and JPEG2000 compression as
well as blur.

• IRCCyN/IVC Art Image Quality Database [16], [17]. Half
of this dataset are “art” images from museums, such as
digitized paintings or photos of sculptures. Test condi-
tions include JPEG, JPEG2000, and LAR compression.

• LIVE Image Quality Assessment Database [18], [19].
Release 2 of this popular database. Distortions include
JPEG, JPEG2000, white noise, Gaussian blur, and simu-
lated Rayleigh fading channel (JPEG2000 bitstream).
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TABLE I
TEST MATERIAL SUMMARY.

Database Type Year Total Rated SRC HRC Resolution Framerate Format
A57 Gray 2007 57 54 3 18 512×512 BMP
BA Gray 2009 130 120 10 12 512×512 PGM

FSB Gray 2009 215 210 5 42 512×512 BMP
Enrico Gray 2007 105 100 5 20 512×512 BMP

MW Gray 2009 132 120 12 10 512×512 BMP
WIQ Gray 2009 87 80 7 512×512 BMP

CSIQ Image 2010 930 866 30 24-30 512×512 PNG
IVC(I) Image 2005 195 185 10 10-25 512×512 BMP

IVC-3D Image 2008 96 90 6 16 512×512 BMP
IVC-Art Image 2009 128 120 8 15 512×512 PPM+JPG
LIVE(I) Image 2006 1011 779 29 25-27 ∼768×512 BMP

MICT Image 2008 196 196 14 12 768×512 BMP
MMSP-3D(I) Image 2010 54 54 9 6 1920×1080 JPG

TID Image 2008 1725 1700 25 68 512×384 BMP
EPFL/PoliMI Video 2009 156 156 12 12 CIF/4CIF 25/30fps YUV+264

IVC-1080i Video 2008 192 192 24 7 1080i 25fps YUV
IVC-RoI Video 2009 84 84 6 14 576i 25fps YUV+264

IVP Video 2011 138 138 10 10-14 1080p 25fps YUV
LIVE(V) Video 2010 160 150 10 15 768×432 25/50fps YUV+264/M2V

MMSP-3D(V) Video 2010 60 30 6 5 ∼1080p 25fps AVI(XVID)
MMSP-SVD Video 2010 58 84 3 various 720p 50fps SVC+264

NYU-1 Video 2008 75 60 6 5 CIF/QCIF 30fps YUV
NYU-2 Video 2009 68 68 4 16 CIF/QCIF 30fps YUV
NYU-3 Video 2010 210 180 6 15 CIF/QCIF 30fps YUV

NYU-PL Video 2007 34 12 17 1 QVGA 10-15fps YUV
VQEG-FR Video 2000 360 320 20 16 480i/576i 25/30fps UYVY
VQEG-HD Video 2010 740 740 49 75 1080i/p 25/30fps AVI(UYVY)

Total Total number of images or videos.
Rated Number of images or videos with subjective ratings.
SRC Number of source (reference) images/videos.
HRC Number of test conditions (a.k.a. hypothetical reference circuits).

Resolution Image/video resolution (i/p indicates interlaced/progressive).
Format Image/video file/encoding format.

• MICT (a.k.a. Toyama) Image Quality Evaluation
Database [20] focuses on JPEG and JPEG2000 compres-
sion. Two subjective datasets are available, from CRT and
LCD monitors [21].

• MMSP 3D Image Quality Assessment Database [22],
[23]. The test conditions represent different inter-camera
distances. All images are JPEG-compressed.

• Tampere Image Database (TID) [24], [25]. Currently the
largest image quality database available in the public do-
main, both in terms of test images and number of subjects.
It contains a wide variety of distortions, including various
types of noise, blur, JPEG and JPEG2000 compression,
transmission errors, local image distortions, luminance
and contrast changes.

C. Video

• EPFL/PoliMI Video Quality Assessment Database [26],
[27]. Test conditions focus on H.264 compressed videos
corrupted by simulated packet loss due to transmission
over an error-prone network.

• IRCCyN/IVC 1080i Database [28], [29] comprises high-
definition (HD) video compressed using H.264. In addi-
tion to ACR MOS [2], SAMVIQ MOS [30] is available
for part of the database.

• IRCCyN/IVC SD RoI Database [31], [32] includes
standard-definition (SD) video compressed using H.264,
with and without transmission errors.

• IVP Database [33] comprises progressive HD video com-
pressed with MPEG-2, Dirac wavelet, and H.264 codecs
as well as H.264 streams affected by simulated packet
loss. DMOS are provided separately for expert and non-
expert observers.

• LIVE Video Quality Database [34], [35]. Test condi-
tions include MPEG-2 compression, H.264 compression,
simulated transmission of H.264 compressed bitstreams
through error-prone IP wired and wireless networks.

• MMSP 3D Video Quality Assessment Database [36], [37]
is the first public-domain database on 3D video quality.
The test conditions represent different camera distances.
All videos are slightly cropped and compressed.

• MMSP Scalable Video Database (SVD) [38]–[40]. The
test conditions include two scalable video codecs using
multiple spatial and temporal resolutions. The database
only includes the sources together with the software
and process for creating the test conditions, rather than
including the test videos as such. Subjects performed
paired comparisons in side-by-side viewing sessions.

• Poly@NYU Video Quality Databases. Three separate but
related tests [41]–[44] using videos with different frame
rates and quantization parameters.

• Poly@NYU Packet Loss (PL) Database [41], [45]. Small
database on the impact of packet loss in H.264 videos.
Test clips are only 2 seconds long.

• VQEG FR-TV Phase I Database [46], [47]. The oldest
public quality database (interestingly it came out several
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TABLE II
SUBJECTIVE EXPERIMENT SUMMARY.

Database Method Data Subjects Ratings Age Female Screen Distance PSNR
A57 DMOS 63%
BA DSIS Raw 17 17 6 Hs 93%

Enrico DSIS Raw 16 16 6 Hs

FSB DSIS Raw 7 7 6 Hs 74%
MW DSIS Raw 14 14 6 Hs

WIQ DSCQS Raw 60 30 20-53 20% 17” CRT/LCD 4-6Hs 64%
CSIQ Custom DMOS+σ 25 5-7 21-35 LCD 80 cm

IVC(I) DSIS DMOS+σ 15 15 6 Hs 65%
IVC-3D SAMVIQ DMOS 19 19 µ=28 21” CRT 4Hs

IVC-Art DSIS Raw 19 19 CRT 4Hp

LIVE(I) ACR DMOS+’σ’ 20-29 students 21” CRT 2-2.5Hs 88%
MICT ACR Raw 16 16 17” CRT 4Hp 61%

MICT/IVC ACR MOS+σ 27 27 17” LCD 4Hp 62%
MMSP-3D(I) ACR Raw 17 17 22-53 6% 46” LCD 3Hs

TID PC MOS+’σ’ 838 33 19” LCD varying 55%
EPFL/PoliMI ACR-HR Raw 40 34 24-40 19”/30” LCD 4-8Hp

IVC-1080i ACR-HR Raw 29 28 37” LCD 3Hs

IVC-RoI ACR Raw 25 25 19” CRT 6Hp

IVP ACR DMOS+σ 42 35 20-38 26% 65” PDP 3Hp 69%
LIVE(V) ACR DMOS+σ 38 29 students CRT 37%

MMSP-3D(V) ACR Raw 20 17 24-37 30% 46” LCD 3Hs

MMSP-SVD PC Raw 16 16 µ=28 31% 30” LCD 2-3Hp

NYU-1 ACR Raw 22 16-22 students 14” LCD
NYU-2 ACR-HR Raw 31 15 16%
NYU-3 ACR MOS+σ 33 15 21-33 18%

NYU-PL SSCQS MOS+σ 32 32 students 17” LCD 4-6Hp

VQEG-FR DSCQS DMOS+σ 287 61-147 19” CRT 5Hs 79%
VQEG-HD ACR-HR Raw 120 24 24-47” LCD 3Hp 78%

Method Subjective testing method used (refer to [1], [2] for details). PC: paired comparison.
Data Type of data available: raw scores, MOS/DMOS, standarddeviation (σ) or similar.

Ratings Average number of valid subjective ratings per image/video.
Female Percentage of female subjects.

Distance Viewing distance as a multiple of picture height (Hp) or screen height (Hs).
PSNR Approximate correlation between PSNR and MOS (where provided).

years before the first image quality database). Conse-
quently, test conditions focus on MPEG-2 compression
and transmission and even include some analog distor-
tions.

• VQEG HDTV Database [48]. Test conditions include
MPEG-2 and H.264 compression as well as different
types of network impairments. 5 of the 6 sets in the
HDTV test are being released via the Consumer Digital
Video Library (CDVL) [49]; the sixth set is not public.
Only the data from the 5 public sets are used in this paper.

The videos in these databases are around 10 seconds long,
with the exception of the NYU-PL database. Four databases in
this list include the encoded bitstreams, the rest only provide
the decoded video frames, as indicated in Table I.

D. Other Databases

There are a number of other databases of relevance to image
and video quality researchers. Some annotated databases be-
came available after the work on this paper was completed and
are absent from the analysis presented here. A new database
for mobile video quality assessment is described in another
paper in this special issue [50]. IRCCyN/IVC also added
several recent video databases to its web site.1

Furthermore, some eye tracking experiments were designed
specifically with quality assessment in mind, by including

1 http://www.irccyn.ec-nantes.fr/spip.php?article491

compressed versions of the stimuli [51] or focusing on the
quality scoring task [52].

Finally, uncompressed source content is extremely useful
and valuable for many areas of image and video processing.
TheConsumer Digital Video Library (CDVL) [49] is one such
collection. For 3D content, theMobile 3DTV project [53]
provides a number of stereo and multiview videos; theRMIT
3DV library [54] contains over 30 HD stereo sequences.

III. A NALYSIS

For the analyses in this section, we focus on three as-
pects of annotated databases: source content (i.e. reference
images/videos), test material (i.e. the samples processedby
various test conditions, a.k.a. hypothetical reference circuits),
and subjective ratings. We propose a number of quantitative
criteria to characterize and visualize these aspects to facilitate
comparisons across databases.

A. Source Content

To characterize the source images and videos in each
database along the dimensions of color, space, and time, we
compute the following parameters:

• Spatial information (SI) as an indicator of edge energy
[55]. Let sh andsv denote the gray-scale images filtered
with horizontal and vertical Sobel kernels, respectively.
sr =

√

s2v + s2h then represents the edge magnitude at

http://www.irccyn.ec-nantes.fr/spip.php?article491
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every pixel. The SI value used here is the root mean
square of the edge magnitude over the image or frame:

SI =
√

L/1080
√

∑

s2r/P , (1)

whereP is the number of pixels in the filtered image. The
normalization factor

√

L/1080 (L is the number of lines,
i.e. vertical resolution) is a somewhat crude but necessary
step to reduce the scale/resolution-dependence of SI. SI is
computed on the luminance, which (for images or videos
that are in RGB format) is obtained with the following
conversion formula:

Y = 0.299R+ 0.587G+ 0.114B. (2)

• Colorfulness (CF) as a perceptual indicator of the variety
and intensity of colors in the image. Usingrg = R−G
and yb = 0.5(R + G) − B as a simple opponent color
space, colorfulness is defined as [56]:

CF=
√

σ2
rg + σ2

by + 0.3
√

µ2
rg + µ2

by. (3)

• Motion vectors (MV) as an indicator of motion energy for
video.2 Let v be the motion vector of a block between
two consecutive frames. MV is the normalized root mean
square of the motion vector magnitudes across all blocks
and frames:

MV =
f

L

√

∑

|v|2/M, (4)

whereM is the number of motion vectors (blocks) in
the video. Simple normalization by the number of lines
per frameL and the time interval between frames1/f
ensures MV remains comparable across different reso-
lutions and frame rates. The MVTools 2.5.11.3 plugin3

was used with AVISynth 2.58 and VirtualDub 1.9.11 for
motion vector estimation (function “MAnalyse”, default
settings, 8×8 pixels block size).

For video, SI and CF values are averaged over all frames.
Chroma upsampling and color conversion of video frames was
done using functions from the Intel Integrated Performance
Primitives (IPP) 5.3.4

The raw SI, CF, and MV values for each database are shown
in Figure 1. As can be seen from the plots, there are quite
dramatic differences in the distribution of source contentalong
these dimensions across databases.

Using the above source content characteristics (let’s call
themCi, whereC1 = SI, C2 = CF, C3 = MV), we want to
assess numerically how well the space of all possible sources is
covered by a given database. We propose the following criteria
for each relevant dimensioni:

• Range of source characteristicCi over all sources in the
database:

RSRC

i =
max(Ci)−min(Ci)

Cmax
i

, (5)

2 Temporal information (TI) is another commonly used indicator ofmotion
energy; however, it is highly correlated with spatial complexity and thus less
suitable for separate motion classification.

3 http://avisynth.org.ru/mvtools/mvtools2.html
4 http://software.intel.com/en-us/articles/intel-ipp/
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Fig. 1. Spatial information (SI) vs. colorfulness (CF) and motion vectors
(MV), respectively, and corresponding convex hulls (red lines).

whereCmax
i specifies some maximum value for the given

dimension, so that the maximum range is approximately
1 (we useCmax

1 = 150, Cmax
1 = 100 andCmax

3 = 3).
• Uniformity of coverage. We compute this as the entropy

http://avisynth.org.ru/mvtools/mvtools2.html
http://software.intel.com/en-us/articles/intel-ipp/
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of the B-bin histogram ofCi over all sources in the
database.

USRC

i = −

B
∑

k=1

pk logB pk, (6)

wherepk is the normalized number of sources in bink.
We chooseB = 10. The entropy is highest (U = 1) for
completely uniform distributions.

These criteria are plotted in Figures 2 and 3, quantifying the
intra- and inter-database differences in source content charac-
teristics. Because the uniformity criterion is not meaningful
when there are few data points, only those databases with at
least 10 sources are shown. Overall, most databases fare rather
poorly in terms of both criteria.
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Fig. 2. Relative rangesRSRC

i
of source characteristics SI, CF, and MV.
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databases with 10 or more sources.

Since we have up to three dimensions of these basic 1-
D criteria, it is helpful to define an additional criterion that
expresses the coverage of the 2- or 3-dimensional space of
source characteristics. We propose the following:

• Relative total coverage T based on the convex enve-
lope/hull of the set of points in normalizedCi/C

max
i

space. For gray-scale images,T = RSRC
1

. For color
images,T is the square root of the area of the convex

envelope of all points in normalized SI×CF space. For
video, T is the cube root of the volume of the convex
hull of all points in normalized MV×SI×CF space.

The relative total coverageT for all databases is plotted
as a function of the number of sources in Figure 4. As can
be expected, a larger number of sources generally improves
coverage, even though some databases with fewer sources
are surprisingly “efficient” in terms of the range of source
characteristics (e.g. Enrico, NYU-1). Overall, the databases
with the most content variety manage to cover about 50-60%
of the possible range in each dimension, while the bottom end
lies around 10-20%.
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Fig. 4. Relative total coverageT vs. number of sources (grayscale
databases: black/crosses; color image databases: blue/stars; video databases:
red/dots/italic).

Finally, we count the scene changes (both cuts and blends)
for each source video. Only a handful of databases have
sources with scene changes:

• IVC-1080i: 2/1/1 sources (out of 24) with 1/3/4 scene
changes, respectively.

• IVC-RoI: 1 source (out of 6) with 1 scene change.
• IVP: 2/1 sources (out of 10) with 1/5 scene changes.
• VQEG-FR: 3/1 sources (out of 20) with 1/3 scene

changes.
• VQEG-HD: 5/13/2/2/2/1 sources (out of 49) with

1/2/3/4/5/7 scene changes.

As can be seen, some databases include a few sources with
few scene changes. The notable exception is the VQEG-HD
database, where over half the source videos contain scene
changes.

B. Test Material

To analyze the processed test samples, we compute the peak
signal-to-noise ratio (PSNR) for all test images and videosas
a rough indicator of the overall range of distortions in each
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database.5 We use the simplest possible method to compute
PSNR here, from the luminance channel only (see Eq. (2)
above for RGB-to-luminance conversion where necessary). No
spatial/temporal alignment or brightness/contrast equalization
is performed.

Figure 5 shows density histograms of PSNR for all
databases. The median PSNR values cover a relatively wide
range from a low of 20 dB (NYU-PL) to 40 dB (FSB,
EPFL/PoliMI6). The concentration of distortions around cer-
tain PSNR levels is also visible.
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Fig. 5. PSNR density histograms for all databases, sorted by their median
(denoted by a wider red line) within each category. Each individual rectangle
represents a bin containing 10% of the data points.

Similar to what we defined for characterizing the source
content above, we use the following criteria for the test
material and its distortions:

• Range of PSNR over all test samples in the database:

RPSNR = PPSNR

100−n − PPSNR

n , (7)

wherePPSNR
n is then-th percentile of PSNR values in

ascending order, with linear interpolation between ranks
where necessary. We choosen = 5.7

• Uniformity of coverageUPSNR. We compute this again
as the entropy of the 10-bin histogram of PSNR values
over all test samples in the database, analogous to Eq. (6).

Figure 6 shows the range and uniformity of PSNR for
all databases. WIQ, LIVE (image), and VQEG-HD databases
have the largest ranges in their categories. Uniformity is
somewhat mixed, with few databases doing very well.

5 Several video databases are absent from the PSNR analysis inthis section:
IVC-RoI does not include the source videos; MMSP-3D does notintroduce
any video distortions; for MMSP-SVD and the NYU databases, PSNR is
ill-defined because of the scalable coding framework.

6 The only distortions in the EPFL/PoliMI database are packetlosses (the
reference clips are already compressed), which in some cases affect only a
few frames, leading to very high average PSNR.

7 When comparing PSNR ranges across databases, it is important tonote
that images or video with very high PSNR (from 40-50 dB onwards) may not
exhibit visible distortions.
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Fig. 6. UniformityUPSNR vs. rangeRPSNR of PSNR distributions.

C. Subjective Ratings

The main aspects considered in the analysis of the sub-
jective ratings here are the distributions of the mean (MOS)
and standard deviationσ of the subjective ratings, as these
are indicative of the quality range of the test material and
the precision of the results.8 To make them comparable for
all experiments, all rating scales are normalized by linear
transformation to a common 0-100 scale.

Figure 7 shows the standard deviations as a function of
MOS of each database.9 The differences in the distributions
of MOS and standard deviation between databases are evident,
especially for video. At the same time, the plots highlight two
interesting features common to many databases:

• The standard deviation is typically highest around the
middle of the MOS range and decreases towards the ends
of the scale. This inverted-U shape can be observed for
most databases and subjective experiments, independently
of the rating scale used. As we demonstrated previously in
[57], this is due largely to the clipping of ratings towards
the ends of the scale.

• The data points fall on a kind of arched grid pattern for
databases using discrete 5-point scales, because of the
limited number of possible MOS-σ combinations for such
a coarse scale. This is most visible here for some of the
image databases (Enrico, FSB, MW, IVC, MICT) as well
as the VQEG-HD database.

We use the following criteria for quantifying the character-
istics of subjective ratings in a database:

• Range of MOS over all test images/videos in the database,
again based on percentiles:

RMOS = PMOS

100−n − PMOS

n , (8)

where PMOS
n is the n-th percentile of MOS values in

ascending order, with linear interpolation between ranks
where necessary. We choosen = 5.

8 MMSP-SVD is absent from the analysis in this section becauseit only
provides paired-comparison data.

9 The A57, LIVE (image), and TID databases are excluded from these plots
because their standard deviations could not be confirmed.
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Fig. 7. MOS vs. standard deviation of subjective ratings. The red lines mark
the respective medians.

• Uniformity of coverage,UMOS. We compute this again
as the entropy of the 10-bin histogram of MOS values
in the database, analogous to Eq. (6). Uniformity is
important because perceived quality levels should be
more or less equally distributed across the whole range
and not emphasize one part of the scale over another.

• Variability V of the ratings. It is computed as the median
of standard deviations, restricted to thoseσ with MOS
values in the middle 25% of the range (e.g. from 2.5 to
3.5 on the 1-5 scale). This restriction is necessary because
of the significant variation of the standard deviation with
MOS as discussed above and evidenced by Figure 7. A
small variability is good because it means the average is
more “reliable”, and confidence intervals are smaller.

Figure 8 shows uniformity vs. range of MOS distributions.
While MOS uniformity is generally quite high, especially
compared to source or PSNR uniformity, the plot illustratesthe

difficulty of getting subjects to use the full range of the rating
scales: the MOS for several of the databases barely cover half
of the available range (e.g. LIVE (video), TID, VQEG-FR,
and a few others).
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Fig. 8. UniformityUMOS vs. RangeRMOS of MOS distributions.

We further defineDiscriminability D based on the maxi-
mum percentage of overlapping 95%-confidence intervals (CI),
which is computed as follows. We create a histogram, where
all bins (bin size is 1% of the MOS scale) within the range
MOS±CI are incremented by 1 for each test sample. After
doing this for all MOS values, the bin counts are normalized
by the number of test samples in the database. Examples of this
histogram are shown in Figure 9.D is defined as 1 minus the
relative number of entries in the largest bin. It is an indicator
of how well subjects were able to distinguish individual test
images/videos across the database.D responds to range and
uniformity of MOS coverage, as well as MOS variability.
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Fig. 9. Sample histograms of overlapping confidence intervalsfor VQEG-
FR and VQEG-HD databases. The circles denote the maxima used for the
definition of discriminabilityD.
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Figure 10 shows the DiscriminabilityD as a function of
Variability V .9 The first thing to note is that there is no obvious
correlation between these two parameters, or with the num-
ber of subjective ratings. Considering Variability alone,most
databases are somewhere in the range of 15-25% of the rating
scale, with some going as low as 10%. The EPFL/PoliMI
database has the highest discriminability, with overlapping
confidence intervals for at most 13% of test samples. For the
worst cases, discriminability falls below 0.6, indicatingthat the
MOS values of nearly half the test samples are not significantly
different.
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Fig. 10. DiscriminabilityD vs. Variability V of subjective ratings. Marker
radius is proportional to the number of valid subjective ratings.

IV. D ISCUSSION

There are many criteria that can be used to assess and
compare databases. We proposed numerical expressions for
some of them in this paper. These quantitative criteria can
also be helpful in designing a new database and subjective
experiment, even though not all of them are easy to target
or establish before carrying out the actual tests. Also note
that optimizing for one or more of these parameters will
not necessarily result in a “better” database. Ultimately,the
purpose of an image or video quality database should be to
retrieve the advantages and disadvantages of all tested quality
metrics [25].

While a database is usually designed with a specific ap-
plication in mind, the larger the number of sources and test
conditions, the more aspects of the problem space can be cov-
ered. Variety is especially important for the sources, in order
to make sure the database is general enough for extension to
content that was not part of the actual test. Characteristics
to look out for include spatial complexity (textures, patterns),
temporal complexity (object and camera motion), color, faces,
text, etc. This is where many databases fall short, as Sec-
tion III-A highlights, both in terms of uniformity and range
of the source characteristics that we analyzed. Furthermore,
there is quite a bit of overlap in source material between

databases, particularly for video, as there is a limited amount
of uncompressed video content available in the public domain.

Of course it is difficult to create source content with very
specific amounts of say SI or MV and especially combinations
thereof, but the data provided here can be used as a guide
to determine where content is lacking. For example, there
are relatively few clips with high motion content; especially
combinations of high MV with high SI are missing. Identifying
such content and making it available would help improve
future databases.

Likewise, a large variety of test conditions, distortion levels
and types is important not only for the purpose of sampling the
entire space, but also for obtaining discriminative ratings from
the subjects. This area is perhaps the easiest to address, and the
data shown in Section III-B attest to this. Note however thatthe
proposed criteria do not account for distortion variety, which
is another important aspect; most databases are highly focused
on compression and/or transmission, while ignoring the large
number of possible distortions relevant in other applications.

Subjective ratings are the most valuable and perhaps also
the trickiest part. One aspect we considered is the distribution
of MOS values in terms of range and uniformity. For example,
one of the common criticisms of the VQEG FRTV-I database
is its bias towards the high quality range. As shown in
Section III-C, many other databases have similar problems
with MOS range, even though uniformity is generally good.

Adhering to a rigorous methodology is important when
conducting subjective experiments, but perhaps even more
important is documenting the details of the experimental
design and execution. Unfortunately, this is an aspect where
many of the current databases fall short, as the sparseness
of Table II shows. Perhaps these tables and the discussions
here can serve as a rough documentation framework for future
database releases.

Viewing conditions also matter: Screen type and resolution,
room setup, lighting, viewing distance, and other experiment-
specific parameters should be documented. However, there
are two schools of thought: some believe that well-controlled
experimental conditions and strict compliance with ITU rec-
ommendations (as can only be achieved in a lab environment)
are essential [58], whereas others argue that naturally variable
viewing conditions as users experience in their daily life
(different screens, viewing distances, light levels, etc.) are
preferable to collect realistic MOS data [25], [59]. The TID
database is an example of the latter approach.

Subject pre-screening (i.e. vision tests) and post-screening
(i.e. removal of suspicious scores) should be performed,
and the specific methods applied (e.g. from [1]) should be
mentioned. The subjects demographics (age, gender, etc.) can
also have an impact on MOS [60]. In many experiments,
male university students are the majority, which may affect
the ability to draw conclusions about the responses of other
population groups. Again, this information should be included
with a database. Finally, it should be considered good practice
to release the raw subjective ratings rather than just MOS
and σ, so that users can do their own verification or further
analysis (for example, this would have been useful to confirm
the “standard deviations” included with the LIVE (image) and
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TID databases).
Since there is no single best database, and because separate

databases cannot simply be combined into one, most metric
developers train and/or benchmark their algorithms on multi-
ple databases independently (typically maximizing individual
correlations or minimizing prediction errors). However, this
is prone to biases from various database-specific peculiarities.
While there are methods to cross-calibrate multiple quality
metrics using a common dataset [61], better approaches to
benchmarking using multiple datasets are also needed.

Comparison with the subjective ratings from annotated
image or video quality databases has become the standard
approach for testing quality metrics; it tries to answer the
question, “how accurate is this metric?” However, this is byno
means the only question that can be asked, or perhaps even the
best. For example, quality metrics can be evaluated and im-
proved by generating specific types and degrees of distortions
[62]. An approach based on the premises of software testing
was proposed in [63], where the goal is to expose errors rather
than demonstrating that the system satisfies certain specifica-
tions. Based on this idea, a methodology for systematic stress
testing of quality metrics was developed, which attempts to
determine whether a quality metric is inaccurate [64]. Since
these approaches do not rely on full-fledged subjective tests,
they can serve as valuable complements in metric testing and
evaluation.

V. CONCLUSIONS

More than two dozen annotated image and video quality
databases are now available in the public domain. This en-
couraging development facilitates benchmarking of algorithms
(see also [65] for more on this topic) and helps make models
more comparable.

In addition to a detailed overview of these databases, this
paper proposed several quantitative criteria and analysismeth-
ods for source content, test material, and subjective ratings,
that allow analytical comparisons of databases.

The list of databases is bound to grow as new applications
(e.g. 3D or multi-view video) emerge. The data presented
here may be useful for identifying content or test material
that is currently missing from the public domain. One type of
database that is particularly lacking is audiovisual content, an
area which generally deserves more attention. An up-to-date
list of links to the various databases is available on the author’s
home page [3].
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