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Abstract Head pose classification from surveillance images acquired with distant, large
field-of-view cameras is difficult as faces are captured at low-resolution and have a blurred
appearance. Domain adaptation approaches are useful for transferring knowledge from the
training (source) to the test (farget) data when they have different attributes, minimizing
target data labeling efforts in the process. This paper examines the use of transfer learning
for efficient multi-view head pose classification with minimal farget training data under
three challenging situations: (i) where the range of head poses in the source and target
images is different, (ii) where source images capture a stationary person while target images
capture a moving person whose facial appearance varies under motion due to changing
perspective, scale and (iii) a combination of (i) and (ii). On the whole, the presented methods
represent novel transfer learning solutions employed in the context of multi-view head pose
classification. We demonstrate that the proposed solutions considerably outperform the state-
of-the-art through extensive experimental validation. Finally, the DPOSE dataset compiled
for benchmarking head pose classification performance with moving persons, and to aid
behavioral understanding applications is presented in this work.
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1 Introduction

Over the years, extensive research has been devoted to the study of people’s head pose
due to its relevance in security, human-computer interaction, advertising as well as cognitive,
neuro and behavioral psychology. Head pose dynamics have been found to be useful for
determining the attentiveness of drivers (Doshi and Trivedi|2012)), addressee identification in
human-robot interaction (Katzenmaier et al.|2004) and analyzing social behavior in structured
and unstructured interactive settings (Subramanian et al.[2010;|Lepri et al.[2012; [Subramanian
et al.[[2013). Even as humans can effortlessly deduce others’ head pose from near and far
views, most automated approaches require detailed facial shape and textural information for
reliable head pose estimation (see Murphy-Chutorian and Trivedi| (2009) for a review).

Recently though, there has been active interest in determining the head pose from
surveillance data (Smith et al.|2008; Tosato et al.|[2010; |Zabulis et al.|[2009; |Orozco et al.
2009; [Benfold and Reid|201 1} |Chen and Odobez2012) where faces are captured by distant,
large field-of-view cameras. Under these conditions, estimating head pose is difficult as
faces are typically captured at low resolution and appear blurred. Nevertheless, a majority
of these techniques are designed for single-camera systems monitoring a relatively small
region in space (e.g., train station passageways). Also, employing a single camera view is
often insufficient for studying people’s behavior in large environments and a handful of
approaches (Mufioz-Salinas et al.[2012; [Zabulis et al.|2009; |Voit and Stiefelhagen|2009) have
exploited multi-view images to achieve robust pose estimation. Yet, most of these estimate
head pose of a person rotating irn place.

The larger goal of this work is to estimate people’s 3D head orientation as they freely
move around in naturalistic settings such as parties, museums and supermarkets. Labeling
sufficient training data for head pose estimation in such settings is inherently difficult, mainly
due to the motion of targets (persons) and the large possible range of head orientations. In
contrast, acquiring considerable head pose training data from meeting or group conversational
scenarios is much easier due to the involvement of stationary targets and a limited range
of head orientations (predominantly frontal head tilt[ﬂ). Therefore, we model head pose
estimation in naturalistic settings as a transfer learning problem: To learn the relationship
between head pose and facial appearance from many labeled examples corresponding to the
conversational scenario (source data), and employ domain adaptation techniques to transfer
this knowledge to the naturalistic setting (farget data), utilizing only a few target-specific
training examples. Here, we also assume that the source and target data are acquired under
different conditions, so that models trained on existing and richly annotated datasets can be
directly exploited for transfer learning.

Fig[T]illustrates why transfer learning is an effective solution for head pose estimation in
the target scenario. We use the CLEAR dataset (Stiefelhagen et al.[2007) where targets rotate
in place as the source, and the DPOSE dataset (Rajagopal et al.|2012), compiled to study
head pose estimation under target motion, as the target— these datasets evidently differ with
respect to (a) scene dimensions, (b) relative camera positions and (c) illumination conditions.
To simulate the meeting scenario, we only learn from CLEAR images corresponding to a
frontal head tilt as seen on the left. For simplicity, we divide our original problem (P3) into
two sub-problems P1 and P2, which are illustrated on the right- P1 represents the condition
where the DPOSE targets are stationed at a particular scene location as in CLEAR, but exhibit
a larger head tilt range as in a museum or a supermarket. P2 denotes the case where targets

"Head pose estimation involves determination of the pan (out-of-plane horizontal head rotation), tilt
(out-of-plane vertical rotation) and roll (in-plane head rotation). In this work, we are mainly concerned about
estimating pan and tilt.
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TRANSFER
LEARNING

Fig. 1 Problem overview: (Left) Exemplar 4-view CLEAR image corresponding to the source setting
involving a stationary target with frontal head tilt shown two-by-two. The facial appearance in four camera
views are shown on the bottom right inset. Our objective is to apply knowledge learnt from many source
examples onto the target setting P3 which combines P1 and P2, where P1 represents the case where targets are
stationary, but exhibit a larger head tilt range as compared to the source, while P2 involves the same set of
head poses as in the source, but with moving targets. Figure is best viewed under zoom.

exhibit the same range of head poses as in the source, but are freely moving. Considering P2 in
particular, target facial appearances for an identical head pose at two different scene locations
are shown. Significant differences in the target’s facial appearance for the four camera views
can be seen due to perspective and scale changes- as the target moves closer/away from a
camera, the face appears larger/smaller as for the first two views, while face regions can
become occluded/visible due to target motion as evident from the third and fourth camera
views. Therefore, directly learning pose-appearance relationship on the target data will
require training examples acquired at many scene locations, which is prohibitively expensive.

To study the impact of facial appearance changes due to varying head tilt (as exemplified
by P1) and target motion (denoted by P2) on head pose classification, we performed the
following experiments. We trained a state-of-the-art head pose classifier based on array of
covariance (ARCO) descriptors with the 4-view source images (as in
Fig[T), and tested the classifier with (a) source images and (b) farger images corresponding to
conditions P1 and P2. The task was to classify the 3D head pan into one of eight classes, each
denoting a quantized 45° pan. Table[T|presents the results. Even though ARCO descriptors are
robust to scale and lighting variations, pose classification performance dips sharply when the
ARCO classifier is tested with the target data instead of source. For example, even when the
target faces correspond to a frontal tilt as in the source, varying image acquisition conditions
limit the target classification accuracy to about 57%. The accuracy reduces further as the
target facial appearance becomes more dissimilar with respect to the source, as with the
downward head tilt, where cameras see more of the target’s head instead of the face. A further
accuracy difference of 13.2% between the frontal and motion cases demonstrates the impact
of motion in the target dataset.
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Table 1 Impact of head tilt variations and target motion on ARCO head-pan classification accuracy (expressed
as %). To study P1, we used target images with exclusively frontal, upward and downward head tilt, and all of
these tilts. Task is to assign head-pan to one of eight classes.

TRAN TEST | CLEAR DPOSE fiontal DPOSEup DPOSEdown DPOSEall | DPOSE motion

CLEAR 91.9 57.2 62.7 34.2 52.1 44

In this paper, we propose a number of transfer learning solutions to overcome the adverse
impact of changing attributes between the source and rarget data on head pose classification
performance. Transfer learning can be broadly categorized into instance-based transfer
and parameter/feature-based transfer. Instance-based transfer learning involves training
a classifier with many source and a few target instances, under the assumption that the
source data is still useful in the target scenario. In a nutshell, learning is performed assigning
different weights to training samples in the source domain reflecting their relevance in the
target domain. On the other hand, parameter/feature-based transfer involves modeling of
parameters/features common to both source and target data, so that source-target similarities
can be exploited for target learning.

To address P1, we propose a domain adaptive version of the ARCO pose classifier based
on the instance-based transfer learning technique described in (Dai et al.|2007)). However,
this adaptation is still not effective for determining the head pose of moving targets. For
solving P2, we therefore propose a novel parameter transfer learning approach where a set of
face patch weights are learnt from source data, with each patch weight indicating saliency of
the face patch for pose classification. These weights are then adapted to the target scenario,
incorporating a patch reliability score measuring the face patch’s appearance distortion under
target motion. Note that for problems P1 and P2, we are interested in determining only the
head pan, resulting in an equal number of source and farget classes. In P3, we show how
transfer learning is applicable in the case where the number of source and farget classes are
unequal, by utilizing knowledge learnt from source data to determine both head pan and tilt
under motion in the target dataset. To this end, we employ an adaptation of the transferable
distance learning framework proposed in (Yang et al.|[2010). Overall, the afore described
methods represent novel transfer learning solutions in the context of multi-view head pose
classification, and considerably outperform competing methods as confirmed by experimental
results.

To summarize, the main contributions of this paper are:

— We address head pose estimation from surveillance images acquired with multiple and
distant large field-of-view cameras by casting it as a transfer learning problem. To our
knowledge, we are the first to adopt domain adaptation to tackle this challenging task.

— Motivated by the interest to study people’s behavior in naturalistic settings, we consider a
multi-camera framework, as single-camera systems are often insufficient for monitoring
large spaces, and monocular head pose estimation approaches do not achieve sufficiently
robust estimates. Furthermore, in contrast to most previous works, we deal with the
challenge of estimating head pose for freely moving targets. Target motion necessitates
development of novel solutions which can effectively cope with change in facial appear-
ance due to varying perspective and scale, which we achieve by efficiently exploiting
camera geometry information.

— An extensive experimental evaluation is conducted on the novel DPOSE dataset, which
is explicitly compiled for benchmarking head pose classification with moving targets.
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The paper is organized as follows. Section 2]reviews related work. Section [3]describes the
CLEAR and DPOSE head pose databases which are used as the source and farget datasets in
this work, and details the pre-processing steps involved prior to transfer learning. Discussion
and evaluation of the proposed transfer learning solutions for problems P1, P2 and P3 are
presented in Sections [4] [5]and 6] respectively. We then conclude in Section

2 Related Works

To highlight our research contributions, we now review related work on (a) head pose
estimation from surveillance data, (b) multi-view head pose estimation and (c) use of transfer
learning for computer vision applications.

2.1 Head-pose estimation from surveillance data

Many works have addressed the problem of head pose estimation from low resolution
images (Smith et al.[ 2008} Tosato et al.|2010;|Orozco et al.[2009} [Benfold and Reid|2011};
Chen and Odobez2012). Given a large field-of-view camera capturing a number of moving
subjects, Gaussian Mixture and Hidden Markov models incorporating location and head
pose information are used to determine the number of persons who attend to an outdoor
advertisement in (Smith et al.|2008)). To determine the coarse head pose of moving persons
in crowded scenes as in the i-LIDS (HOSDB|[2006) underground scene dataset, a novel
Kullback-Leibler (KL) distance-based facial appearance descriptor is proposed in (Orozco
et al||2009). However, the classification performance achieved in this work is exceeded
through the use of array-of-covariance (ARCO) descriptors robust to scale/lighting variations
as well as occlusions in (Tosato et al.|[2010).

Recent approaches have attempted unsupervised or weakly supervised approaches to pose
classification exploiting constraints related to head and body motion. In (Benfold and Reid
2011), an unsupervised scene-specific gaze estimator is proposed by feeding the output of a
head tracker to a conditional random field (CRF), which models the relationship between head
motion, walking direction and appearance and simultaneously trains decision tree classifiers.
Alternatively, head pose is determined in (Chen and Odobez/2012) employing motion-based
cues and constraints imposed by joint modeling of head and body pose. Nevertheless, a
primary limitation of the aforementioned works is that they determine head pose in a single
camera set-up.

2.2 Multi-view head pose estimation

Among multi-view pose estimation works, a particle filter is combined with two neural
networks for head pan and tilt classification in (Voit and Stiefelhagen/[2009). Also, a HOG-
based confidence measure is used to determine the relevant views for classification. In (Munoz-+
Salinas et al.[|2012), multi-class SVMs are employed to compute a probability distribution
for head pose in each view, and the view-specific distributions are fused to produce a more
precise pose estimate. However, both these works attempt to determine head-orientation of
a person who rotates in place, while our objective involves computing the head pose of a
moving target. Recently, multi-view head pose classification has been attempted employing
active transfer learning in|Yan et al.|(2012)) and multi-task learning in|Yan et al.| (2013). A
robust, multi-view head pose estimation approach that can handle moving targets is discussed
in (Zabulis et al.[2009). Here, facial texture is mapped on to a spherical head model, and head
pose is determined from the face location on the unfolded spherical texture map.
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While (Zabulis et al.|2009) also attempts to solve aforementioned problem P2, our
approach differs from theirs in some respects. Firstly, a large number of cameras are required
to synthesize an accurate texture map, (a total of 9 cameras are employed in their work),
while our solution can work with much fewer cameras. Also, synthesizing a textured 3D
model is computationally expensive. In contrast, our solution is predominantly image-based,
requiring minimal use of the 3D camera geometry.

2.3 Transfer learning

An elaborate categorization and review of various transfer learning solutions proposed in
literature is presented in (Pan and Yang|2010). When the source (training) and rarget (test)
data are drawn from different distributions, machine learning methods do not work well
requiring statistical models to be trained again with labeled farget data. In many real-world
applications, it is highly expensive to collect target training data and rebuild farget-specific
models. In such cases, transfer learning or domain adaptation between the source and target
data/tasks is highly desirable.

There are several approaches to transfer learning. Instance-based transfer learning (Dai
et al.|2007; Jiang and Zhai|2007) involves the reuse of source data in a related target domain
assuming that certain parts of the source data are still useful in the target scenario. A transfer
learning framework modeled on Adaboost is proposed in (Dai et al.|2007), which leverages
on extensive labeled source data in addition to a few labeled target data to train an accurate
target classifier. In (Jiang and Zhai|2007) a method to remove potentially harmful training
samples from source data is proposed, upon determining the relevance of source samples by
taking into account the difference between conditional probabilities computed on the source
and on the rarget data.

Feature-based transfer involves finding a ‘good’ feature representation for the source
and target. Labeled source and target data features are copied to synthesize an augmented
feature space in (Daume |2007), on which supervised learning is employed while jointly
optimizing source and target feature weights to maximize prediction accuracy. Alternatively,
parameter-based transfer (Williams et al.|2007) involves discovery of shared parameters or
priors between the source and target models which can benefit from transfer learning.

2.4 Transfer learning in Computer Vision

Transfer learning approaches have become very popular in computer vision recently. A
transfer learning approach to overcome limited training data for certain classes in object
detection is presented in (Lim et al.|2011)). To this end, a model learns from training examples
of other object classes, and transforms those examples to make them more similar to farget
instances. Another visual domain approach to tackle the varying distribution of object features
across image datasets (e.g., high resolution DSLR vs webcam images) is discussed in (Kulis
et al.[2011)). Given labeled source and target examples, an asymmetric, non-linear transfor-
mation is applied to map examples from one domain to another- this transformation can be
applied independent of the dimensionality of the source and target domains. Analogously,
an adaptive multiple kernel learning method is proposed in (Duan et al.[2012) to recognize
visual events in consumer videos upon learning from labeled web (e.g., Youtube) videos.

Transfer learning solutions have been extensively employed for activity recognition.
Activity recognition across views through the transfer of splits (arrangement of discriminative
hyperplanes) from the source to the target view is described in (Farhadi and Tabrizi|2008)).
Another methodology for cross-view action recognition employing a transferable and sparse
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dictionary pair learnt for the source and rarget views is described in (Zheng et al.[|2012).
Finally, a transferable distance function is learned for action detection with sparse training
data in (Yang et al.[2010). Learning salient image patches indicative of human actions from
video frames in training sequences, the saliency of each patch in the test video frame is
computed following which, a weighted distance is measured between the training and test
videos to recover actions similar to the training video.

Examining related works applying transfer learning in computer vision, it is evident that
no transfer learning solutions have been proposed to address head pose estimation, and in
particular, multi-view head pose estimation for moving targets. We adopt the framework
proposed in (Dai et al]2007) to solve problem P1 introduced in Section[I] For solving P2,
we adopt the method proposed in (Ricci and Odobez|2009) for learning face patch weights
indicative of their saliency on the source dataset, and adapt these weights to the farget through
an online learning procedure. This novel transfer learning approach is inspired by previous
works such as (Zhang and Yeung|2010), where an effective regularization term for learning
the source-target relationships is proposed. To solve P3, which involves estimation of both
pan and tilt in the target upon learning from source examples only corresponding to a frontal
tilt, we devise a weighted-distance approach employing hyperfeatures adapted from (Yang
et al.[2010). We describe the source and target datasets used in this work, as well as the steps
involved in face cropping and facial feature extraction in the following section.

3 Datasets and pre-processing steps

Now, we present details regarding the datasets used followed by a brief discussion of how
faces of targets are localized and cropped. Facial appearance for the source data is consistent
across targets, as they are imaged while stationed at the same spatial location; however, facial
appearance varies with target position in the target dataset, as evident from Fig[l] Since we
adapt a classifier learnt on the source to work on the target data, we transform all target
appearances to a canonical appearance in order to determine which face patches can reliably
be used for pose classification- a process termed perspective warping. We also describe the
perspective warping procedure in this section.

3.1 Datasets

We use the popular and extensively annotated CLEAR dataset (Stiefelhagen et al.[2007)
as the source. The CLEAR database comprises over 27000 synchronously recorded 4-view
images of a person standing at the center of a lecture room (Fig[I] left panel). The four
cameras are placed in the room’s upper corners, and the person rotating in-place wears a
flock-of-birds magnetic motion sensor through which his/her head movements are measured.
Head pose measurements for 15 subjects are available as part of the CLEAR database.

Head rotation measurements are also provided by the UcoHead (Muifioz-Salinas et al.
2012) and Greece (Zabulis et al.|2009) datasets. Ucohead contains 6-view images capturing
head rotations of 10 persons and associated pose measurements- however, here again the
subjects rotate in-place and the dataset is much smaller than CLEAR. The Greece dataset
contains 9-view images (8 wall-mounted cameras and one ceiling camera) of moving persons.
Nevertheless, ground truth head pose readings are available only for one sequence involving
a mannequin head mounted on a tripod. Therefore, these datasets were not used in our study.

In order to objectively evaluate head pose classification performance for moving targets,
we compiled the dynamic headpose or DPOSEE] database (Rajagopal et al.|[2012), which is

2available at http://tev.fbk.eu/DATABASES/DPOSE.html



8 Rajagopal, Subramanian, Ricci, Vieriu, Lanz, Ramakrishnan and Sebe

used as the target dataset in this work. The DPOSE dataset consists of over 50000 4-view
synchronized images capturing static as well as moving targetﬂ with ground-truth head pose
measurements acquired using an accelerometer, gyrometer, magnetometer platform. Target
head movements are captured using cameras mounted at the corners of a 6x4.8 m? room. It
is important to note here that, apart from target motion, the source and target datasets also
differ with respect to (a) scene dimensions and distance of cameras from the subject, (b)
relative camera positions and (c) illumination conditions.

Since we are more interested in pose classification rather than precise head pose estima-
tion, we segmented the CLEAR and DPOSE data into 24 classes, with eight demarcations
denoting a quantized 45° (360/8) head-pan and three demarcations for the head-tilt, namely,
Sfrontal ([—20°,20°]), upward ([20°,90°]) and downward ([—90°,—20°]). Since our goal is to
learn the head pose-facial appearance relationship from group conversation-like scenarios,
we used only CLEAR images corresponding to the frontal tilt for training in our experiments.

3.2 Face cropping and Perspective Warping

Since we rely on the facial appearance of static/moving targets to classify the head
pose, the pre-processing steps prior to facial feature extraction include person tracking, face
localization and cropping. Also, when the target moves, we transform the face appearance to
a canonical form through a perspective warping procedure. These steps are detailed below.

A multi-view, particle filter-based framework to track targets’ 3D body centroid positions
using a shape-cum-color model (Lanz|[2006; Lanz and Brunelli||2008) is used for face
localization. Given the body centroid and height of the target as estimated by the tracker
(Fig[a) top), we sample a new set of particles around the estimated 3D head-position using
a Gaussian with variance oy = 6, = 30cm, 0, = IOC Assuming a spherical model of the
head, a head-shape likelihood is computed for each particle by projecting a 3D sphere onto
each view employing camera calibration information (Fig[2Ja) bottom). Finally, the sample
with the highest likelihood sum is determined as the head location and the circular face crop
is generated as in Fig[2|c). This procedure integrates information from multiple views using a
unique 3D geometrical head/ body-model with occlusion handling, and can be used to jointly
locate heads of multiple persons.

As the main difference between source and target datasets is that the target data involves
moving persons, we always transform a moving target’s face appearance to a canonical 4-view
appearance corresponding to a reference position in the scene that best matches with the
source imaging conditionsﬂ This warping allows for scale and perspective-related changes
in facial appearance to be geometrically compensated for, when the camera calibration is
known. Learning pose-appearance relations from the farget data can then be more effective,
under our assumption that only a few labeled farger samples are available.

The perspective warping procedure is outlined in Fig[2{b). Assuming a spherical head
model, to reconstruct the canonical appearance, each pixel corresponding to the canonical
appearance is first back-projected onto a sphere, virtually placed at the reference position, to
obtain the corresponding 3D surface point. This sphere is then translated to the target position,
and the image projections of the translated surface points are computed to determine the

327824 4-view images correspond to static targets rotating in-place at the room center, while 25660 images
capture freely moving targets.

4These values account for the tracker’s variance, the horizontal and vertical offsets of the head from the
body centroid due to head pan, tilt and roll.

SThis warping can also be applied in the case where the number of cameras/views for the source and target
are different.
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Fig. 2 (a) Head-localization procedure: color-based particle filter output (top). Projection of spherical head
model used for shape-likelihood estimation shown in red (bottom). (b) Overview of the perspective warping

process. (c) Original 4-view face crops (top), warped crops (middle) and patch visibility at reference location
(bottom).

canonical-to-target pixel correspondences for warping. During this process, visual information
may be lost owing to self-occlusions resulting from sphere translation, or pixels could be
merged or dilated (due to multiple correspondences between canonical and target pixels).
To account for these inconsistencies, we assign a pixel reliability score, ry, € [0,1] to each
canonical pixel upon warping. The weight is calculated as the ratio (upper-bounded to 1) of
the area of target and canonical surface patch (or surfel) projections in the target appearance
image.

Fig[2c) presents an example of the original and warped facial appearances in the four
views along with the computed reliability masks. Significant relative pose difference induced
by the target’s displacement from the reference position can be observed in the first and last
views. Also, large changes between the original and canonical views are noticeable around
the periphery, while central regions are more similar. This is because, when the displacement
between the target and canonical positions is large, reliable correspondences can only be
computed in the canonical image for target pixels around the center, while multiple peripheral
target pixels tend to correspond to the same canonical pixel. Therefore, canonical pixels that
arise from peripheral regions in the target image are assigned lower r,’s (occluded pixels
have r, = 0), while r,,’s for central pixels are closer to 1.

Under target motion, we rely on the reliability masks to determine those facial regions
(or patches) that are useful for pose classification. As these masks will vary depending on the
target position, we divide the space into distinct regions and compute the typical/expected
reliability mask for each region from the target training set. In all the following experiments,
original (for stationary targets) or canonical (under target motion) appearances from the
four views are resized to 20 x 20 pixel resolution and concatenated to synthesize the 4-view
facial appearance image as in Fig[2[c). Thereafter, appearance features are computed for
overlapping 8 x 8 patches (with a step size of 4). The following sections describe the proposed
transfer learning solutions for solving aforementioned problems P1, P2 and P3.

4 Head-pan classification under varying head-tilt

Now, we focus on problem P1 illustrated in Fig[T] where the objective is to predict
head-pan in the target upon learning from many source and a few target examples. Apart
from varying image acquisition conditions, facial appearance in CLEAR and DPOSE differs
due to the range of head poses exhibited by subjects- while all CLEAR training examples
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correspond to a frontal head-tilt, DPOSE head-tilts are in the range [—90°,90°]. However,
we assume that in both CLEAR and DPOSE, targets rotate in-place at a fixed scene location
(room center). Therefore, facial appearance for a given head pose remains consistent across
targets with respect to perspective and scale.

To begin with, we tested if the array-of-covariance (ARCO) classifier (Tosato et al.|2010)
trained on source can effectively predict head-pan for the rarget images. ARCO uses powerful
covariance features, robust to occlusions as well as scale and lighting variations, for head-
pose classification from low-resolution images. Upon dividing the image into a number of
overlapping patches, ARCO computes covariance-based patch descriptors. Subsequently, a
multi-class Logitboost classifier is learnt for each patch, and the test sample is assigned a
label based on majority vote of the patch-based classifiers. Nevertheless, as shown in Table[T]
ARCO is still ineffective for predicting head pose when the source and target data attributes
vary considerably, as with the CLEAR and DPOSE datasets.

An effective method for transferring knowledge across datasets through induction of a
few target examples in the learning process is proposed in Tradaboost (Dai et al.|2007).
Tradaboost is modeled on AdaBoost where, given a training set comprising source and
target samples, a set of weak learners are learnt such that misclassified target samples are
given priority at each step. In this way, the resulting model is tuned to effectively predict
target samples. Analogously, the ARCO framework also employs a multi-class Logitboost
classifier {F;} for each image patch, comprising [ = 1...L weak classifiers. Given a training
set {x;} with N samples corresponding to class labels 1...J, the Logitboost algorithm
iteratively learns training samples most difficult to classify through a set of weights w; and
posterior probabilities, Pj(x;). Each weak learner solves a weighted-regression problem,
whose goodness of fit is measured by the response value vector for the /" training sample,
zi={aiy

Following (Dai et al.[2007), we designed ARCO-Xboost- a transfer learning approach
for the ARCO Logitboost classifier as follows. Given N + M training data comprising N
source and M target samples, with N >> M, the error on target (&) is computed at every
step upon normalizing the w;’s. Also, o, and o;, which are respectively the attenuating and
boosting factors for misclassified source and target samples, are determined. Finally, weights
of misclassified target data are boosted by a factor of ¢, so that the model incorporates more
target-specific information, while the weights for misclassified source weights are attenuated
by a factor of e~ % to discourage learning of these samples. ARCO-Xboost is summarized in
Algorithm[T}

4.1 Experimental Results and Discussion

For all our experiments, the source training set comprised 300 CLEAR images for each
of the eight frontal tilt classes. Also, all classification accuracies reported in this paper corre-
spond to the mean value obtained from four independent trials involving randomly chosen
target training sets. For the sake of evaluating how ARCO-Xboost improves classification
performance over ARCO, we used covariance features derived from the 12-dimensional fea-
ture set ¢ = [x,y,R, G, B, I, 1y, 0G,Gabor( 6 z/3 4z/3},KL]. Here, x,y and R, G, B denote
spatial positions and color values, while Ix, Iy and OG respectively denote intensity gradients
and gradient orientation of pixels. Gabor is the set of coefficients obtained from Gabor
filtering at aforementioned orientations (frequency = 16 Hz), while KL denotes maximal
divergence between corresponding patches in the target face image and each of the pose-class
templates computed as described in (Orozco et al.|2009). The presented results correspond
to two covariance features, namely, Cov(d = 12), which denotes covariance descriptors



Transfer Learning Approaches for Multi-view Head Pose Classification 11

Algorithm 1 ARCO-Xboost- Transfer learning with ARCO Logitboost
Input: Combined source (x;,y; € ), target (x;,y; € 7;) training set (for each facial appearance image
patch)

T ={01,31),--- (v, BN 1, Y N1 (BN, Tvam) s
where {y;},{y;} = 1..J, number of learners L.

Fori = 1..N + M, initialize weights w; = m and posterior probabilities P;j(x;) = }

Set o = $In(1+4/2in’)
fori=1...L
Initialize learner F; = 0.
Compute response values z; and weights w; from P;(x;)
ifL>1
Normalize the weight vector wy, ..., Wyim

Compute the error on target, & = Y jNM+ 1 W
- i=1 Wi

where h(.) is the classified label.
Set oy = 1in( lgf’),e, <}
Update weights
Wi — wie % 0i#h(x)) (modify misclassified source weights)
w; < wie% O #h(x)) (modify misclassified rarget weights)
end if
Compute learner F; using least-square regression from computed z;;’s and w;’s.
Compute new P;(x;)’s and h(x;)’s.
end for
Output: Set of learners {F; }

computed from all features in ¢, and Cov(d = 7), where covariances are computed only for
color and Gabor features.

As such, the ARCO Logitboost classifier learns until all training data are correctly
classified and therefore, ARCO classification accuracies are significantly improved by simply
including a few rarget examples in the training process. For example, when the rarget images
correspond to downward tilt, the head pan classification accuracy improves from 34.2’74?]
to 61% when 5 target samples/class are added to the source data prior to model training.
However, preferentially learning misclassified farget samples over source examples as in
ARCO-Xboost provides a benefit when (a) weaker features are employed for learning (b)
fewer learners are used and (c) very few target examples are inducted for transfer learning.

Fig[3|a-d) shows variation in classification accuracies for ARCO and ARCO-Xboost upon
changing the number of learners L employed in the boosting framework. Plots are shown for
the model trained with Cov(d = 12) (blue) and Cov(d = 7) (red) features extracted from the 4-
view face appearances, with 5 target samples/class added to the source. Higher classification
accuracies are achieved with Cov(d = 12) features, implying that they are superior appearance
descriptors for pose classification. However, larger gains in pose classification performance
observed with Cov(d = 7) features suggest that preferential learning of target examples is
more beneficial with weaker features.

Maximum gains achieved with ARCO-Xboost using Cov(d = 7) and Cov(d = 12) fea-
tures are 8.1% (40.9 vs 37.8, L = 12) and 2.8% (70.6 vs 68.7, L = 8) for the DPOSE down
and all test sets respectively. We observe from Table I]that these test sets are most dissimilar
to the source, resulting in worse classification performance with a source-only model. Thus,
the ARCO-Xboost framework achieves most effective transfer learning for more dissimilar

6as seen from Table which presents accuracies achieved with source-only Cov(d = 12) features
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Fig. 3 Classification accuracies achieved with ARCO and ARCO-Xboost upon varying number of weak
learners L with 5 target samples/class added to the source dataset. 4-view Cov(d = 12) and Cov(d = 7)
features are used. Plots (a-d) correspond to DPOSE images with frontal (#test=12406), upward (#test=5141),
downward (#test=6277) and all tilts (#test=23824).

source and target data. Also, classification performance with ARCO-Xboost more or less
saturates for L > 12.

Classification accuracy trends upon increasing the number of inducted farget samples
from 5-30 samples/class, with L = 12, are shown in FigEKa—d). Here, we also compare the
classification performance achieved with 4-view and single-view features— mean value of
the accuracies achieved with each of the four views is considered for the single-view case.
Considerably higher accuracies are obtained when features extracted from all four views are
employed for pose classification, implying that multi-view information improves robustness
of pose classification on low-resolution images. Both ARCO and ARCO-Xboost classifica-
tion accuracies increase sharply as more farget examples are added to the source training
data. While little difference is observed between ARCO and ARCO-Xboost classification
performance employing Cov(d = 12) features, ARCO-Xboost performs better than ARCO
for both single and 4-views with Cov(d = 7) features. Also, larger gains with ARCO-Xboost
are obtained with single-view features and when fewer rarget examples are inducted in the
training set.

Furthermore, in order to demonstrate the benefit of transfer learning employing exten-
sively labeled source data as against training a classifier only using few rarget data, we
compared classification accuracies obtained with ARCO-Xboost (trained with source+target)
against ARCO trained with only targer data using Cov(d = 12) features. The benefit of trans-
fer learning is evident from Table 2} when either single or 4-view features are employed for
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Fig. 4 Classification accuracies with ARCO and ARCO-Xboost (red) upon varying number of farget training
samples with L = 12. Results are plotted for models trained with 4-view and single-view Cov(d = 12),
Cov(d = 7) features. Plots (a-d) show accuracies for the DPOSE frontal, up, down and all test sets.

Table 2 Classification accuracies with ARCO (only farget) and ARCO-Xboost (source+target) upon varying
number of farget training samples/class with L = 12. Results correspond to models trained with 4-view and
single-view Cov(d = 12) features for the all test set.

# TARGET SAMPLES

5 10 15 20 25 30

METHOD

ARCO(;) (1-view)
ARCO-Xboost s ;) (1-view)
ARCO() (4-view)
ARCO-Xboost ;) (4-view)

[ 428408 [ 519405 [ 61+07 [ 659+04 [ 687+0.8 [ 71.64+0.6 |
| 474405 | 54406 [ 62.6+06 [ 66.9+0.6 | 69.940.7 [ 72.6+0.5 |

60.6+0.9 [ 71.3+05 [ 7904 [ 832+03 [ 85.1+0.6 [ 87.5+0.7 |
| 71.4+0.8 [ 75.9.840.6 | 80.9+0.6 | 845+0.6 | 86.2+0.5 | 838.2+0.6 |

classification. ARCO-Xboost consistently produces higher accuracies, and the performance
improvements are more pronounced for smaller farget training data sizes.

Another set of experiments were conducted to compare ARCO-Xboost with other state-of-
the-art transfer learning methods. More specifically, we consider the Feature Replication (FR)
method proposed in (Daume|2007), the Adaptive Support Vector Machine (A-SVM) approach
presented in (Yang et al.[2007)), the Domain Adaptation Machine (DAM) algorithm (Duan
et al.|2009a), the Domain Adaptive Metric Learning (DAML) (Kulis et al.|2011) and the
Domain transfer multiple kernel learning (DTMKL) described in (Duan et al.|2012). Figure
shows the results of our evaluation when Cov(d = 12) features are used. For SVM-like
methods, we considered a Gaussian kernel. The regularization parameters of all considered
methods were tuned upon cross-validation. Three auxiliary classifiers are used in A-SVM and
DAM, while 20 pre-learned base kernels are adopted in DTMKL. From Fig. 5} we observe that
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Fig. 5 Comparison with state-of-the-art transfer learning approaches. Results are plotted for models trained
with source+5 target samples/class, and with 4-view Cov(d = 12) features. Plots (a-d) show accuracies for
the DPOSE frontal, up, down and all test sets.

all transfer learning approaches achieve very similar performance, with DTMKL achieving a
slightly superior accuracy. The improved performance of DTMKL can be attributed to the
use of multiple kernels in the learning framework.

In all subsequent experiments, ARCO-Xboost classification accuracies obtained with
L =12 will be used for benchmarking. The next section discusses a second transfer learning
approach for determining the head pan of a freely moving target, and why an instance-based
transfer learning framework like ARCO-Xboost is unsuitable in that situation.

5 Head pan classification under target motion

In this section, we address problem P2 introduced in Section [T} where the objective is to
employ knowledge from source images capturing stationary targets to determine head pan in
target images involving freely moving persons, but exhibiting the same range of head poses
as in the source. As shown in Fig[T] the challenge in this scenario is that facial appearance for
a given pose changes with the target’s position due to varying camera perspective and scale.

To this end, we propose a two-step, adaptive weights learning technique outlined in Fig[f]
First, upon dividing of the multi-view facial appearance image into a number of overlapping
patches as described in Section 3.2} the weight of each patch denoting its saliency for pose
classification is learnt from source images. These patch weights can be directly applied to
the rarget dataset if it also involves stationary targets. However, since the rarget dataset
involves moving persons, visibility of face patches and their reliability for pose classification
would vary based on the target’s position. Therefore in the second step, we transform the
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Fig. 6 Overview of the adaptive weights learning approach for head-pan classification under target motion.

person’s appearance in the farget dataset to a canonical appearance corresponding to a
reference spatial positionﬂ and then adapt source patch weights to the farget based on the
visibility differences between the current and reference target positions. A notable aspect
of the proposed transfer learning approach is that the target adaptation can be performed
virtually online, upon acquiring very few training examples for each pose class corresponding
to different room partitions. Finally, the pose class of a target test image is assigned using
its nearest training example, computed using a weighted distance measure. The proposed
transfer learning framework is formally described in the following section.

5.1 Learning a Distance Function under target motion

For our problem scenario, the source (CLEAR) has many exemplars with persons standing
at a fixed position, while the rarget (DPOSE) has persons imaged as they are moving.
Formally, from the large source set 75 = {(x1,11),(x2,b2),..., (Xn,,In,) }, we seek to transfer
knowledge to the farget incorporating additional information from a small number of rarget
samples 7, = {(x1,11),(x2,12),...,(xn,,1n,)}. Here, x;/x; and [;/1; respectively denote
sourceltarget image features and associated class labels.

Overview: The proposed transfer learning framework is a two-step process. First, a
discriminative distance function is learned on the source. Given that each image consists of
Q patches, we learn a weighted-distance on the source, Dw (X;,X;) as a parameterized linear
function, i.e., Dy (X;,X j) = WsTdi j» where d;; is the distance (we use Euclidean distance)
between corresponding patches in images. Wy is the source patch weight vector, which
encodes the saliency of each face patch for pose classification.

We propose to learn Dy (X;,X ;) by imposing that a pair of images x; and x; corresponding
to the same pose should be more similar than two images x; and x; corresponding to different
poses. Formally, the following quadratic programming problem is considered (Ricci and.
Odobez[2009):

min WP+ Y g M)
WnéiZO 2 : NY i=1 '

s.t. minW!dy —maxWld; >1-¢&
Li#l, li:[]'

In our implementation, we consider the room-center as the reference position.
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In practice, the weight vector W with minimum norm is obtained imposing that the minimum
inter-class distance exceeds the maximum intra-class distance by a margin. &;’s are slack
variables and the parameter A controls the trade-off between regularization and constraints
violation. The constraints W > 0 are introduced to impose that the learned distance function
is always positive. To solve this optimization problem, we adopt an efficient iterative algorithm
based on stochastic gradient descent (Algorithm 2)).

Learning Distance Function on the Target: In the second step, a distance function
Dy, (+) is learned on targer data .7;. W is used in this phase, in order to transfer the source
knowledge onto the target. The reliability score for each target patch as computed from the
canonical transformation (Fig2Jc)) is also considered.

We first discuss the adaptation of the source weights to the farget, assuming that all zarget
images correspond to a reference position associated to the canonical image. We formulate
the adaptation problem as:

1M
i MW+ LaeWTEZ= W)+ — Y & 2
oo T o 1 W] + Agtr( )+Nti;é§z ()

s.t. 1122{1}(Wfd¢—£1;{(ijdg2 1-&, w(X)=1

where tr(-) denotes trace of matrix, W = [W; W,]7 and £ € R**? is a symmetric adaptation
matrix defining the dependencies between the source and the target weight vectors. The
transfer learning is realized by the term tr(W7 £~ ! W), and specifically by learning the source-
target dependency matrix X. This adaptation term, previously proposed in (Zhang and Yeung
2010), allows for both negative and positive transfer, and, being a convex function on the
optimization parameters, makes our approach convex. Defining £ = [a ;5 1— a}[ﬂ
can be rewritten as follows:

. 1 &
min 7 (o, B)|[W;|* — pa (0, BYWI W, — ;3 (a, B)|W,|P+ = Y& 3
W:.a,p Mi:l

s.t. min W/ dy — max,W/d;; >1-&, W, >0, &>0, a(l —a)—p>>0
1;#1 1;=1; ’

where we define

At B) = (1~ @)~ B () =+ o
Yz(a,ﬁ):%%(a,ﬁ):% “

Finally, we integrate information regarding appearance variation in the multiple views
due to position changes. As previously stated, when the target appearance is transformed to
the canonical form, the reliability of a face patch for pose classification depends on the target
position. We assume that the room is divided into R distinctive regions, and to effectively learn
appearance variation with position, we have K, farget training samples for each region r € R.
The patch reliability score vector, p = [p,],¢q = 1..Q, is determined from the mean reliability
score of the P patch pixels, i.e.p, = % Z£:1 r, and the expected patch reliability for region

r,r =1..R, is computed as p, = KL, Zf{:’l pi. Given p,, a diagonal matrix B € RZ* for region

_q_n
r is defined such that B, = e (=5 i p = g and 0 otherwise. Then the optimization problem
can be reformulated accounting for patch reliability as follows:

8% is chosen to be positive semi-definite and have a trace equal to 1 as proposed in (Kulis et al.|2011)
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Algorithm 2 Online algorithm to solve (IJ) and (6)
w=ComputeDistance(.7, 0,, 6,, w,, M)

{
Set the number of iterations 7' and the sample size k (' = 100 and k = 5 in our experiments).
w=0.
fort=1,...,7T do
Choose 7, C 7 s.t. |.T| =k
Set 7 = {(xi,1;) € Fp : maxy 2y =1, {1 —wT&}-\; +wT(Al?ﬂ >0}
V (xi,1;) € 7 compute constraints violators
R 2 PPN ~M ~M
{&j, 1), R, lk) € T %,k = argmaxy, i, j,-1;, {1 —wTd,-j +wTdik]}
~M N ~M o %)
w = (1= )W + 7 Lxe st [d (xi, %) —d (x,-,xj)} ~ g5 Wo
w' =max{0,w'}
f_ s 1 t
w = min{l, Za w
endfor
}

. 1 &
min (. B)|[BW,|* —na(a, BYWIW, —p(a, B) WP+ =Y. & (5)
w g 13 Nt i=1

1,6,
s.t. min W/ dy — max W/d;; >1-&, W, >0, >0, a(l—a)—p>>0
1i#L, 1;=1;
Solving the Transfer Learning Optimization Problem. To solve the optimization problem
, we consider the auxiliary vector, W; = BW; and re-define accordingly W = B’1Ws and

~

d; = B~'d;;. We adopt an efficient alternate optimization approach, where we first solve
with respect to W, keeping a, 8 fixed, and then, given a certain distance function we compute
the optimal adaptation weights o, . The optimization problems that must be solved are:

. < AT 1M
min_yi (o, B)||Wi[|> — p(a, )W, W, + =Y & (6)
W .£>0 N; i=1
. A ~ T ~B
s.t lIin;éI{IkWt dik—rfl:all);er d;>1-¢& and
rrgnaTO st. 8710 —e"0 <0 )
where 8 = [a B|T.e=[1 07, a= W, W,—W.W, —2W W,

As for the source data, to solve @ we adopt an efficient online learning approach. The
objective function of the quadratic program (6) is a sum of two terms: a strongly convex
function, i.e., the square norm of the weights, and a convex function which is represented by
the sum of the differences of the similarity scores and the contribution of source weights. For
solving this, we again employ Algorithm 2] The optimization problem (7) can be reduced
to a Second Order Cone Programming (SOCP) problem and it is solved efficiently using
SEDUM]ﬂ The overall alternate optimization approach terminates upon convergence and the
learned target weights are W, = B~'W,. The entire process is outlined in Algorithm
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Algorithm 3 Adaptive Weights Learning

Input: The source and target training data .7, .7;.
Learning on Source Data
Set A to a fixed value (A; = 1 in our experiments).
W ,=ComputeDistance(.7;, A, 0, 0, I);
Learning on Target Data
Compute patch reliability matrix B.
Set A; and 4, to fixed values (A; = 100, A, = 10 in our experiments).
SetW,=B~'w,.
repeat until convergence
Compute ¥ (a, B), »(a,B) with @
W,=ComputeDistance(.7,, Y, v, Wi, B);
Given W, W, compute a, 8 solving (7).
end
Compute W, = B’IW,.
Output: W,

Table 3 Performance comparison for 8-class head-pan classification under target motion. The room is divided
into 4 quadrants (R1-R4). Classification accuracies are computed using a training set comprising 2400 Source
training examples (300 samples/class) and 160 rarget examples (5 samples/class/region). # Test = 2399 (R1),
3185 (R2), 3048 (R3), 2996 (R4). NWD accuracies are reported within braces.

ARCO-Xboost ~ ARCO-Xboost WD WD WD Multi-view
Cov (d=1) Cov (d =12) Cov (d=1) Cov (d =12) LBP SVM
R1 41.1+£0.9 66.1+1.2 65.8+1.2(33.1) 69.8+1.1 45 747+1.1(609) 47.6+1.2
R2 43.6+£1.2 67.6+1.3 67.4+£1.1(41.5) 724412 (51.6) 77.6+£1.2(61.3) 513+1
R3 459+1 66.2+1 59.6+13(51.2) 63+£1.1 (59.6) 66.9+0.9(58.7) 41+0.9
R4 41.7+1.2 59.1+1.3 60.6+1.2(37.8) 624+1.4 (423) 64.5+1.1(58.3) 41.6+1
Regions Average 43.1+1 64.8+1.2 63.4+1.2(40.9) 66.9 £1.1(49.7) 70.9+1(59.8) 454 +1

5.2 Experimental Results and Discussion

We now evaluate the adaptive weighted distance learning framework for pose classifi-
cation under target motion against: (i) ARCO-Xboost, described in section [d] and (ii) the
multi-view SVM (MSVM)-based pose estimation proposed in (Mufioz-Salinas et al.|2012).
MSVM-based pose estimation feeds gradient features from the target appearance image in
each camera view to a multi-class SVM classifier, the output of which is used to compute
a probability distribution over all pose classes. Then, a combined distribution fusing the
multi-view information is computed for determining the pose class.

Since a region-specific B matrix is used in the adaptation framework, we divide the
scene of interest into R = 4 non-overlapping regions and assume that a few farget training
examples are available per quadrant. Region-wise classification accuracies achieved using
only 5 farget samples/class/quadrant are presented. Fig[7]shows the mean reliability masks
computed through the perspective warping procedure (Section [3.2) from farget training
examples in each quadrant. These masks demonstrate why we opt for region-based patch
weight learning for the farget. The masks for diagonally opposite regions R1, R3 and R2,
R4 are antisymmetric, i.e., darker regions in the R1 mask are brighter for the R3 mask and
vice-versa. This is again due to the perspective problem— as the target moves, the face patches
visible in the canonical view also vary, and visibility of a face patch modulates its saliency
for pose classification.

Apart from Cov(d = 7) and Cov(d = 12) features, we also employ 64 bin-indexed local
binary pattern (LBP) descriptors (Wang et al.|2009) to learn face patch weights using the

“http://sedumi.ie.lehigh.edu/
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proposed framework. Furthermore, we analyze how learning of patch weights is beneficial by
comparing classification accuracies achieved with a nearest-neighbor (NN) classifier employ-
ing the weighted (WD) and unweighted (NWD) distance measures{ﬂ Tablepresents the
region-wise classification results. NWD classification accuracies obtained with the different
features are indicated in braces. Optimal values of the regularization parameters A; and A,
(whose values are reported in Algorithm 3, are set using a separate validation set.

Considering the mean classification accuracy over all quadrants, we make the following
observations. Evidently, learning of face patch weights through the proposed adaptive frame-
work is immensely beneficial under target motion. For all the features used, WD accuracies
are much higher than NWD accuracies. In section [d.I] we observed that transfer learning
is more beneficial when weaker features are employed for learning. Results obtained with
weighted distance learning are consistent with that observation. Best WD accuracy is obtained
with LBP, followed by Cov(d = 12) and Cov(d = 7) features. However, performance gain
with the learning of patch weights is greatest for Cov(d = 7) (gain of 55% with WD and
NWD accuracies respectively being 63.4 and 40.9), followed by Cov(d = 12) (34.6% gain)
and LBP (18.6% gain).

ARCO-Xboost and WD classification accuracies are predictably higher for Cov(d = 12)
as compared to Cov(d = 7) features. Adaptive weights learning comfortably outperforms
ARCO-Xboost with Cov(d = 7) features, while WD accuracy is slightly higher than ARCO-
Xboost with Cov(d = 12) descriptors. Comparing the best WD and ARCO performances
achieved with LBP and Cov(d = 12) features respectively, WD outperforms ARCO-XBoost
by 9.5% (70.9 vs 64.8). Also, classification performance achieved using MSVM is only
slightly better than ARCO-Xboost with Cov(d = 7) features. This is because MSVM uses
only gradient features for learning, and is not designed to handle appearance changes arising
from varying target position.

While adaptive weighted distance learning is designed under the assumption that acquir-
ing many head pose training examples under target motion is expensive, we also analyzed
how ARCO-Xboost and WD classification accuracies vary when the number of target train-
ing examples vary from 5-30 samples/class— results are presented in Fig[§] Fig[[a) shows
ARCO-Xboost and WD accuracies when the target position is fixed at the room-center (as in
section[d), while Fig[b) presents mean accuracy plots for the moving target scenario (we
assume 5-30 target samples/class/region here). Very similar accuracies are achieved with
both distance learning and ARCO-Xboost when large farget training sets are employed for
the stationary case. Nevertheless, WD outperforms ARCO-Xboost even with large rarget
training sets asssuming freely moving targets. With 30 DPOSE training samples/class/region,
accuracies achieved with WD (LBP), WD (Cov, d = 12), ARCO-Xboost (Cov, d = 12) and
ARCO-Xboost (Cov, d =7) are 87.7, 86.6, 85.3 and 78.7 respectively.

We also examined the impact of varying the number of source training examples on WD
and ARCO-Xboost classification performance, with 5 target examples/class/region in the
training set— Fig[§](c) presents the results. While the size of the source training set has little
influence on WD classification accuracy, a small reduction in ARCO-Xboost accuracy is
observed for large source training set sizes. This is because when the farget to source training
data ratio is very low, source data dominate the learning process resulting in a source-tuned
model. In such cases, (Pardoe and Stone|[2010) note that many iterations are required to
obtain misclassified target weights comparable to source weights employing the re-weighting
scheme used in boosting frameworks such as (Dai et al.|2007).

10The NN classifier assigns the class label of the nearest rarge training example to the test image.
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Finally, it is pertinent to point out two design-related differences between the ARCO-
Xboost and weights-based transfer learning approaches. First, adaptive weighted-distance
learning explicitly considers reliability of face patches in the learning process unlike ARCO-
Xboost. However, the ARCO-Xboost learning framework is inherently robust, where a
classifier is trained for every patch and the sample class is determined based on the majority
vote of all patch classifiers. We noted earlier that peripheral face patches are affected more
than central face patches by perspective and scale changes under target motion. But the
inferior pose classification performance of ARCO-Xboost suggests that facial appearance
variations under motion are not just restricted to a few face patches— this demonstrates
that head pose estimation for freely moving targets is a non-trivial and salient research
problem. A second difference is that ARCO-Xboost, being an instance-based transfer learning
approach, requires retraining each time the target data attributes change (e.g., varying scene
geometry and illumination conditions) which is time and computation-intensive. In contrast,
the adaptive weighted distance learning approach employs a two-step process: source weights
are learned in the first step, and this learning is performed exactly once. With varying target
attributes, target-specific adaptation can be achieved almost on-the-fly since this learning
process requires only a few training examples.

A further series of experiments were conducted for comparing WD performance with
other state-of-the-art transfer learning methods (Fig. [0). The adaptive weights learning
approach, which explicitly incorporates camera geometry information in the learning frame-
work, outperforms most other competing approaches. However, DTMKL, which is a powerful
framework employing 20 pre-learned kernel classifiers for domain adaptation, produces the
highest classification accuracies.

It needs to be noted here that while some competing methods use multiple auxiliary
(source) classifiers for knowledge transfer (e.g., DAM uses three auxiliary classifiers), our
approach employs only a single source classifier for transfer learning. Extending our current
transfer learning framework to integrate knowledge from multiple sources and incorporate
kernel learning will be the focus of future work. Finally, facial feature representation influ-
ences the performance of all methods and that is turn, dependent on the quality of facial
cropping. In addition to its utility for transfer learning under target motion, camera geometry
information is also used by the 3D tracker employed in our framework to enable accurate
face localization and cropping of moving targets.

We also show some qualitative results obtained with the adaptive weights learning
approach in Fig[I0] Fig[T0fa,b) correspond to a single moving target, while Fig[I0[c) shows
computed pose labels for 2 of 6 freely moving targets having an informal conversation as in
a party. Fig[TOf(a) corresponds to a correct result, while Fig[TO(b) shows an incorrect result,
because the face localization and ensuing face crops (on the top-right inset) are erroneous.
Fig[I0[c) demonstrates that this approach can work well even with multiple targets. While no
pose ground-truth was available for this sequence, the computed pose labels can be observed
to be correct from visual inspection.

6 Head pose classification in naturalistic settings

Now, we focus on our original problem P3: learning from many training examples where
stationary targets exhibit a frontal head-tilt and adapting this knowledge to determine head
pose (both pan and tilt) of freely moving targets showing unrestricted head movements. While
P3 essentially represents the combination of afore-discussed problems P1 and P2, we also
have an unequal number of source and target classes here— the range of source head poses is
discretized into 8 classes, while the target head pose range is divided into 24 classes (arising
from 8 pan and 3 tilt intervals).
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Fig.7 The mean reliability masks computed from 40 farget training samples for R1-R4, which are respectively
the room quadrants traced in anti-cyclic order beginning from top-left.

WD (LBP)

> I >
: 15 g9 WD (d=12)
: : ¥ - ARC0-Kboost. (d=7)
g § ¢ a +-ARCO-Kboost(d=12)
§ § §
3 g b 4 70
H H H
. ——

Rl g ! I
[ ; » W (18) ;
4 W (189) i 6 ) o
[ " H > (¢=12) d
g - (¢=12) i ) i
g o BRCO-Koost. (d7) sl S -+ BRC0-Kooost (1) | | § ]
% - i e -BRCO-Tooost (@12)| | fe
v +-RRCO-Kboost. (¢<12) b [#RRCO-Kooost. (¢12) | §

10 15 20 25 30 10 15 20 25 30 foo 200 30 400 500 600 7

# target samples # target samples # source samples
@ (b ©

Fig. 8 (a) Variation in head pose classification performance with increasing number of farget examples with
stationary target. Variation in classification performance upon increasing number of (b) target examples and
(c) source examples under target motion.

80

K

76

74

77

7o

23

66

64

62

60

R1

R3 R4

Overall

Fig. 9 Comparison with state-of-the-art transfer learning approaches for scenario P2. Experiments are

performed using source+5 target samples/class/qudrant, and with LBP features.

To address the adaptation problem where no source training examples are available
for a number of classes, we adapt the transferable distance learning approach proposed
in (Yang et al.[2010, 2009). Inspired by (Ferencz et al.[2008), where hyperfeatures measuring
saliency of patches are used for object identification, a transferable framework employing
hyperfeatures for action recognition is described in (Yang et al.|2009). Here again, samples
are compared using a weighted-distance measure D = (w-d;;), where w is a vector of patch
weights, d;; is a Q dimensional vector denoting patch-based distance between samples i, j and
(+) denotes dot product. Patch weights are defined as a linear function of the patch hyperfeature
matrix F, i.e., w = PTF, where P denotes a vector of transferable parameters. If the similarity
between the source and target datasets is effectively captured by the hyperfeatures, P learnt
on source data can be directly applied to compute the saliency of a target patch from its
hyperfeatures without any learning on the target. It is therefore possible to classify target
data even when only a single example per class is available.

The patch hyperfeature, which captures its saliency for classification, is calculated using
a codebook approach. A codebook vocabulary of size |C| is obtained by performing k-
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Fig. 10 Head pose estimation results with target moving (a,b). Green cone indicates accurate pan estimation
while the red cone denotes wrongly predicted pose label. (c) Results with the proposed approach for a party
scenario involving multiple targets (corresponding video is available is provided as supplementary material).

means clusterng on features accumulated over all source patches. The j* element of the
hyperfeature matrix corresponding to the i patch, F ji» s then computed as the normalized
distance between the patch feature A; and the j* codebook word, ¢ j» as given below

Ko (d(hi,c;)
L Ko(d(hi,cr))

where Kq(x) = Zlm exp( 202) is the Gaussian kernel with appropriately chosen ¢ and d(.)

denotes Euclidean metric. The transferable parameter P is learnt from source data by solving
the dual of a max-margin optimization problem in (Yang et al.[[2009). We formulate the
max-margin optimization problem as

®

Jji —

Ao 1
min *HPII +ﬁ25i
S =1

PE>0

st. min(PTF;,dy) —max(PTF;,d;;) >1-¢&
l,‘#lk li:lj
This primal formulation, as such, is solved using the stochastic gradient descent method
outlined in Algorithm Finally, since the target dataset involves freely moving persons, we
modulate the patch weights by their reliability scores (as given by the B matrices) to account
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Algorithm 4 Computing Head Pose under Target Motion Using Transferable Distance with
Hyperfeatures and Patch reliability Scores
Input: Source and target training data .75, .7;. Target test data Ze,.

Learning on Source Data
Computing Source Hyperfeatures
Codebook {C?} are the |C| centers obtained using k-means clustering on patch features extracted from ..
Compute sample hyperfeature matrix F; Vi = 1...|.Z| using (8) (6 = 1, |C| = 150 in our experiments).

Set A; to a fixed value (A4; = 1 in our experiments). .
Substituting w by PTF; in Algorithm output P=ComputeDistance(.7;, A, 0, 0, I).

Determining B’s from target training data
Compute patch reliability matrix B, for each region r = 1...R from appropriate training examples in .7;.

Testing on target data
fori=1,...,|7¢| do
Calculate hyperfeature matrix F; for test sample.
for j=1,...,|7| do
it {7, Tej} € r
Compute patch-based Euclidian distance between samples d;;
Vector of patch weights w; = PTF;
Reliability-modulated patch weight vector w; = B,w;
Weighted distance D; o= (Wi-dij)
endif
endfor .
Output: Pose class label of 7¢; = argmin D; i
i

endfor

for appearance distortions at positions other than the reference location (room-center). To
this end, as previously, we divide the scene into 4 non-overlapping quadrants and compute B
for each region from farget training examples. Based on the target’s position as given by the
person tracker, the appropriate B is applied to compute NN distance for determining the head
pose class of a test instance. The entire procedure is outlined in Algorithm [}

6.1 Experimental results and Discussion

In this section, we evaluate the transferable distance framework for determining head pose
on the target, comprising 24 pose classes and moving persons, upon learning from the source
comprising 8 pose classes and stationary persons. To this end, we compare classification
accuracies achieved with ARCO-Xboost, multi-view SVM and the transferable distance
approaches assuming that (i) the person rotates in-place and (ii) is freely moving in the target
dataset. Table[d] 5] [6]and [7] present the respective results. We also examine classification
accuracy for source classes (accs.) where source examples are available, non-source classes
(accuse) for which no source training data exist, and overall accuracy (acc,y).

We assume that 5 target samples/class are available for nearest neighbor comparison in
the fixed target scenario. Assuming freely moving targets, we again consider two conditions:
(a) localized train-test setting where 5 target examples/class are available per quadrant and
test samples arise from the same region as the farget training data and (b) sparse training
data setting, where test samples span all regions but only 5 farget examples/class are available
(ensuring at least one target example/class/region). Condition (a) represents an identical
setting as in section [5.2] where region-specific B matrices are employed for adaptation.
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Table 4 Comparison of classification accuracies obtained with different approaches when target position is
fixed at room-center. Source training set comprises 300 samples/class for 8 frontal tilt classes. Target training
set comprises 5 examples/class for 24 pose classes. # Test = 25424. NWD accuracies are reported in braces.

ARCO-Xboost ~ ARCO-Xboost WD WD WD Multi-view
Cov (d=1) Cov (d =12) Cov (d =12) Cov (d =12) LBP SVM
+ LBP + HoG + HoG
accge 57+1.1 73.8+0.9 56.14+1(49.7+£0.9) 56.8+0.6(49.7+0.8) 59+1 (51.84+0.8) 57.54+0.7
ACCnse 14.6+0.8 311+07 60.1+1(583+05) 594+07(583+05) 604+07(589+08) 27.6£0.6
accoy 28.8+0.8 45.4+0.7 583408 (544+1) 58.1+0.7(54.4+£09) 59.7+0.8(55.44+0.7) 41+0.6

Table 5 Classification accuracies for source classes assuming freely moving targets. Source training set
comprises 300 samples/class for 8 frontal tilt classes. The space is divided into 4 quadrants R1-R4. Results
are presented for the localized train-test setting and sparse training data setting (’all’ condition) considered
above. # Test = 4664 (R1), 6330 (R2), 6249 (R3), 5536 (R4) and 22779 (all). NWD accuracies are reported in

braces.

ARCO-Xboost WD WD WD Multi-view
Cov (d=12) Cov (d =12) Cov (d=12) LBP SVM
+ LBP + HoG + HoG
R1 60.7+1.5 49.2+1.9(46.6£2.1) 50+2 (46.6+1.9) 533+1.7(514+1.8) 482413
R2 61.7+1.5 464+1.6(443+£15) 46.1+1.8(443+£1.7) 473+1.5 (46+£1.4) 25.7+1.2
R3 683113 525+£1.8(489+15) 51.3+1.5(489+14) 545+14(51.1+1.4) 23+1.4
R4 62.3+1.1 46+1.5 (444+1.6) 47.6+15044.4+14) 50.8+1.6(47.6+1.1) 319+1
Region Average 633+t14 485+£1.7(46.1£1.7) 48.8+1.7(46.1£1.6) 525+1.6(49+1.4) 322+1.2
all ‘ 53+0.9 358+09 (324+0.8) 344+1.1 (32+0.9) 356+09(33.4+1) 29.8+£0.5

Table 6 Classification accuracies for non-source classes assuming freely moving targets. Results are presented
for the localized train-test setting and sparse training data setting (’all’ condition) considered above.

ARCO-Xboost WD WD WD Multi-view
Cov (d =12) Cov (d=12) Cov (d =12) LBP SVM
+ LBP + HoG + HoG
R1 459+ 1.1 6018 (39.1+1.7) 612E1.6(59.1£1.7) 59+15 (588+1.5) 27411
R2 14 6418 (623+16) 634+121(623+116) 6118 (60£1.7) 11211
R3 BRE12 656116 (6212) 64618 (62£2)  628E19(61.8+12)  84+13
R4 206+ 1.1 603E18(572E15) 608=1.6(572%115) 57.7E15(G5.9E1.7) 1411
Region Average | 429%12  625+11.7(602+1.7) 625E1.8(602%E1.7) 602+1.7(0.1+1.7) 15311
all [ 16+1 4344500 (388+408)  404+1(388+1) 441+13(@A00L1.1) 102409

Table 7 Overall classification accuracies with freely moving targets. Results presented for the localized
train-test setting and sparse training data setting (’all’ condition) considered above.

ARCO-Xboost WD WD WD Multi-view
Cov (d =12) Cov (d =12) Cov (d =12) LBP SVM
+ LBP + HoG + HoG
R1 50.84+1.6 54+2 (52.7£1.5) 55.5+£1.9(52.7%+1.5) 56+1.6 (55+1.5) 38.1+1.3
R2 479+1.5 551+1.4(532+1.5) 547+1.5(53.2+1.5) 54115 (53+1.4) 16.1+1.5
R3 51.9+1.5 592+1.6(55.6+1.4) 58.1+1.7(55.6+14) 592+13 (56.8+1.2) 14+1.3
R4 47.8+1.4 525+1.3(50.3+1.2) 53.4+£1.4(50.3+1.2) 54+1.2 (51.4+1.2) 17.2+1.1
Region Average 49.6 £1.5 5524+1.6 (53+£1.4) 55.4+1.4(53+1.3) 558+1.4(54.1+1.3) 21.4+13
all [ 283+09 395+1 353+1) 373+0.9(353+£1) 39.8+0.9(37.1£1) 18.7+0.9

While target learning is not required for the transferable distance framework, condition (a)
denotes the situation where the farget training and test sets are homogeneous with respect to
perspective and scale-related appearance variations, while condition (b) represents a more
challenging scenario, involving fewer target examples and a larger, heterogenous test set.
For the transferable distance framework, two types of descriptors are needed— one
for computing inter-sample distance, and another to compute hyperfeatures characterizing
patch saliency. For the distance metric, we used Cov(d = 12) and LBP features following
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section [5.2] For computing patch hyperfeatures, we used 66-dimensional feature vectors
combining patch centroid coordinates with 64-bin HoG (Dalal and Triggs|[2005) or LBP
descriptors. The presented results correspond to the Cov(d = 12) + LBP, Cov(d = 12) +
HoG and LBP + HoG distance feature+hyperfeature combinations. As before, we compare
classification accuracies achieved using the weighted distance (WD) measure against the
Euclidian distance (NWD) measure in the distance feature space. A codebook size of 150 is
used to generate hyperfeatures— we observed that the codebook size had little influence on
classification accuracy upon varying the codebook size from 50-500.

From the classification results presented in Tables we make the following remarks.
In Table[d} acc,. values are higher for ARCO-Xboost as compared to WD. This can be also
observed examining Table 5] This is in contrast to the trends observed in section [5.2] A
key difference between adaptive weights learning and transferable distance frameworks is
that explicit learning on target is performed in the former incorporating patch reliability
information to modify patch weights learnt on source data. But no learning on the rarget is
performed with transferable distance learning. We simply modulate the saliency weight of a
face patch by its reliability to account for appearance variations under motion in the target
dataset in this case.

On the other hand, low accuracies are achieved with both ARCO-Xboost and multi-view
SVM for non-source classes in all cases (Tables [4] [6), which adversely impacts overall
accuracies as well (Tables ] [7). With no source training examples available for non-source
classes, only target training examples are utilized for learning. A Euclidian distance-based
nearest neighbor classifier consistently performs better than ARCO-Xboost and MSVM in
this scenario, as seen from NWD accuracies. These results demonstrate that standard machine
learning techniques do not work well with few training data, which is why transfer learning
is adopted to leverage knowledge from related and extensively annotated datasets.

Comparing NWD and WD accuracies for source classes, the largest gain in WD accuracy
is observed with stationary targets— a maximum gain of 14.3% (56.8 vs 49.7) is obtained
with the Cov(d = 12) + HoG combination for the stationary target case. With freely moving
targets, maximum gain of 5.9% (48.8 vs 46.1) is obtained with Cov(d = 12) + HoG features
for the localized train-test condition (considering mean accuracy over all regions), while
highest gain achieved for the sparse training data condition is 11.9% with Cov(d = 12) + LBP
features. For non-source classes, maximum accuracy gains for the stationary target, localized
train-test and sparse training data conditions are 3.1% (Cov(d = 12) 4+ LBP), 3.8% (Cov(d =
12) + LBP) and 11.9% (Cov(d = 12) + LBP) respectively. Collectively, these gains suggest
that transferable distance learning improves pose prediction performance with respect to a
Euclidian distance-based NN classifier for both source and non-source classes.

As with adaptive weights learning, LBP features produce best classification performance
with transferable distance learning also. NWD accuracies are consistently higher with LBP
as compared to covariance features, and the best WD accuracies are observed with the
LBP + HoG combination for most cases. Conversely, larger gains with a weighted-distance
measure are observed for covariance features. However, it is difficult to judge the better of
LBP and HoG for hyperfeature representation from the observed results.

Considering head pose classification for moving targets, a mean overall accuracy of
55.8% with LBP + HoG represents the best 24 class prediction performance achieved for
the localized train-test setting. For the more challenging sparse training data setting, a
highest accuracy of 39.8% is obtained for the same feature combination. Nevertheless, these
accuracies are still higher than those achieved with ARCO-Xboost and multi-view SVM as
elaborated above. MSVM in particular, performs very poorly with freely moving targets.
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7 Summary and Conclusion

This paper represents the first work to explore transfer learning approaches for multi-view
head pose classification and in particular, pose classification under target motion, for which
very few solutions have been proposed in literature. Since direct learning of pose-related
appearance variations under motion would require expensive labeling of a large number of
examples, adapting knowledge from annotated datasets with stationary targets is a viable
alternative. We propose and evaluate transfer learning solutions for three situations where
the source and rarget datasets differ with respect to (i) the range of head poses exhibited
by targets, denoted as P1 (ii) the nature of targets involved (stationary vs mobile targets),
denoted as P2 and (iii) the combination of (i) and (ii) denoted by P3.

ARCO-Xboost, a transfer learning-based adaptive version of the ARCO head pose
classifier (Tosato et al.|2010) is first proposed, and is shown to outperform ARCO when
very few rarget examples are added to the training set or weaker features are employed for
learning. ARCO-Xboost is then used as a benchmark for evaluating other adaptation methods.
We observe that the ARCO-Xboost pose classification approach does not work well for freely
moving targets, or when only few training examples are available for learning.

To determine head pose of freely moving persons in the target dataset, two parameter
transfer learning approaches are considered. First, an adaptive weights learning approach
is proposed where a set of face patch weights, representative of their saliency for pose
classification, are learnt on the source dataset. These weights are then adapted to the target
dataset upon learning from a few farget examples, incorporating information concerning
patch reliability for pose classification under target motion.

A second transferable distance learning method adapted from (Yang et al.[2010) assumes
that saliency of both source and target face patches can be learnt through characteristic
hyperfeatures. Therefore, upon learning the mapping between hyperfeatures and patch
saliency on the source, the same mapping is directly applied on the farget without any further
learning. To account for appearance distortions under motion, farget patch saliency weights
are modulated by their reliability scores. While transferable distance learning improves pose
prediction on target data with respect to a Euclidian distance-based nearest neighbor classifier,
even for pose classes unseen in the source, the improvements are not as high as those achieved
with adaptive weights learning.

We also compared the ARCO-Xboost and adaptive weights learning methods with other
state-of-the-art transfer learning approaches. For P1, all considered approaches produced sim-
ilar classification performance, with DTMKL achieving slightly higher accuracies. DTMKL
again produced the highest classification accuracies for P2, but the proposed WD classifier
outperformed all other competing approaches due to the explicit incorporation of camera
geometry information in the transfer learning framework.

Overall, the proposed transfer learning solutions are novel in the context of multi-view
head pose classification under target motion, which is a relevant and important research
problem in applications such as surveillance and human behavior understanding. To aid
further research in this domain, the extensive dynamic headpose (DPOSE) dataset is presented
in this paper. Future research involves (i) integration of knowledge from multiple sources
and incorporation of kernel learning in our framework, and (ii) use of multi-task learning
and weakly supervised domain adaptation approaches integrating information from multiple
sources (such as body pose, walking direction, efc.) for estimating head pose of freely moving
persons.
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