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ABSTRACT

Cloud image classification has been extensively studied in the
literature, as it has several radio-meteorological and remote
sensing applications. Recently, images from ground-based
sky imagers (GSIs) are being widely used because of their
high temporal and spatial resolution and low infrastructure
cost as compared to satellites. To classify sky/cloud images
obtained from such GSIs, this paper1 examines the applica-
tion of transfer learning using the standard VGG-16 architec-
ture. The paper further analyzes the importance of adjust-
ing the number of neurons in the top dense layers to improve
the performance of the model. The reasons for the same
are traced by conducting extensive experiments on multiple
datasets exhibiting varied properties.

Index Terms— Cloud Image Classification, Transfer
Learning, Deep Learning, CNNs, VGG-16

1. INTRODUCTION

Clouds are known to hinder the propagation of radio waves [1]
and sunlight [2]. At the same time, different cloud types im-
pact the rays in a different manner. Therefore, by accurately
identifying and classifying cloud types, researchers and en-
gineers can better understand their impact on radio wave
transmission and develop strategies to mitigate any poten-
tial disruptions. Similarly, solar energy systems can adjust
their operations according to cloud types that are present lo-
cally, optimizing energy production, and predicting periods of
reduced solar irradiance. This information is valuable in en-
suring reliable solar energy generation, especially in regions
heavily dependent on renewable energy sources.
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Ground-based sky imagers (GSIs) are now preferred over
satellites to capture cloud images at high temporal and spa-
tial resolution in a cost-effective manner [3]. However, their
drawback is the presence of noise caused by factors such as
sun glare, dust particles, and rain droplets [4]. This noise,
along with the diverse shapes, sizes, and textures of the
clouds, complicates accurate classification [5]. The complex
nature of cloud images and the ever changing atmospheric
conditions have led researchers to focus on developing pre-
cise and reliable classification algorithms [6–9].

1.1. Related Work

Conventional methods for classifying sky/cloud images rely
on statistically/manually identified characteristics that de-
scribe the color and texture of the image [6]. Extending
on this concept, Dev et al. [7] proposed a modified texton-
based classification method to integrate color and texture
information and reported an average accuracy of 95% on the
SWIMCAT dataset of 5 classes.

Recently, deep learning techniques have been employed.
In 2018, Zhang et al. [8] proposed CloudNet which reported
accuracies of 98.33% on the SWIMCAT dataset and up to
88% on the newly released CCSN dataset with 11 cloud
classes. Wang et al.’s [9] CloudA architecture raised the bar
with 98.47% on SWIMCAT and up to 98.83% on another
private dataset. In 2022, Liu et al. [5] achieved 84.3% ac-
curacy on a huge 7 class GCD dataset using a context graph
attention network, where CloudNet was claimed to achieve
a mere 74.84% accuracy. Although deep learning models
show potential, such varied accuracies on different datasets is
primarily due to the small size of annotated datasets.

1.2. Contributions

Transfer learning (TL) has proven to be highly effective in
training deep learning models on limited datasets [10], which
has been the issue of main concern. Hence, the objective of
this paper is to examine the application of TL in cloud-type



recognition using GSI-obtained sky/cloud images. The key
contributions are summarized as follows:

• Significantly reduced training time with high accuracy
• Effective usage of TL to compete with state-of-the-art
• In-depth analysis of the impact of number of neurons

in the top dense layers while doing TL

2. DATASETS

This paper uses the following three publicly available datasets:
1. Singapore Whole-sky IMaging CATegories (SWIM-

CAT) dataset [7]
2. Cirrus Cumulus Stratus Nimbus (CCSN) dataset [8]
3. Ground-based Cloud Dataset (GCD) [5]
SWIMCAT has a total of 784 cloud images of size 125×

125 pixels, classified into 5 classes. An image of each class
is shown in Fig. 1 along with the number of images (img) in
that class.

Clear Sky
(224 imgs)

Patterned
(89 imgs)

Thick-dark
(251 imgs)

Thick-white
(135 imgs)

Veil Clouds
(85 imgs)

Fig. 1: Sample images from each class along with the number of
images in each class of SWIMCAT dataset

CCSN is a dataset of 2543 cloud images of size 400×400,
which are then divided into 11 classes. While the other two
datasets were composed only of sky image patches obtained
from the images captured by a GSI, CCSN dataset is com-
posed of landscapes, sceneries, both day and night images,
and sky image patches. Such a large variety of images and
multiple classes with 139 − 340 images per class makes this
dataset more difficult to train on.

GCD is the largest ever annotated dataset of sky patch
images captured by a GSI. It consists of 19, 000 cloud images,
of size 512×512 pixels, which are divided into 7 classes. One
of the classes contains ‘mixed’ clouds with significantly fewer
images and is not considered in the experiments of this paper.
Some sample images from both the CCSN and GCD datasets
are shown in Fig. 2.

(a) CCSN (b) GCD

Fig. 2: Some sample images from the CCSN, and GCD datasets.

In the pre-processing stage, images from all three datasets
are resized to 125 × 125 pixels and then subjected to central

area extraction of 100×100 pixels. Traditional augmentation
layers for random flipping and rotation are added to make the
models more robust.

3. METHODOLOGY

As noted before, most sky/cloud image classification datasets
have small cardinality. Hence, transfer learning (TL) is used
in this paper to train a largely successful deep learning model
for image classification, namely, VGG-16 [11]. We use the
pre-trained model weights on the IMAGENET dataset [12],
which is one of the biggest and most complex dataset for im-
age classfication. A model trained on a complex dataset like
IMAGENET is expected to perform better on a relatively sim-
pler task of cloud image classification. The study is divided
into two parts. While the first part assesses the effectiveness
and benefits of TL, the second part aims to understand the
impact of the number of neurons in the top dense layers.

VGG-16 Convolutional Base Layers
(3 X 3 X 512)

h1 Units
ReLU Activation

Fully-Connected
Layer - hFC1

(256X1)

n Units
SoftMax Activation

Fully-Connected
Layer - Output

(nX1)

   Flatten                     (4608X1)

Output Image Classification Vector
(n X 1) - for n classes

Input Image
(100 X 100 X 3)

h2 Units
ReLU Activation

Fully-Connected
Layer - hFC2

(256X1)

Fig. 3: Network architecture based on VGG-16 base convolutional
layers used in this study. The number of units, i.e. h1 and h2 respec-
tively, in hFC1 and hFC2 layers are variable. Number of units in the
output layer (n) depend on the class count of the dataset.

For the first part, the SWIMCAT dataset was used for
the experiments. According to the TL regime, the convo-
lutional base layers of the VGG-16 architecture are used as
is. In the original architecture of VGG-16, there are 2 fully
connected (FC) hidden layers of 4096 neural units each and
ReLU activation. We will refer to these layers as hFC1 and
hFC2, as shown in Fig. 3. These layers are followed by an-
other FC output layer with softmax activation. However, we
have observed that completely removing the hFC2 layer and
reducing the number of units in the hFC1 layer can signif-
icantly improve the performance of the network. The re-
sults are compared with the state-of-the-art CloudNet [8] and
CloudA [9] architectures. Furthermore, the standard VGG-16
network [11] was trained for the task with and without TL.
For all experiments, cosine decay with restarts was used after
setting the initial learning rate ηinit = 10−6 and the minimum
learning rate ηmin = 10−7. Eq. 2 shows the computation of
the learning rate η in each epoch ep. Finally, early stopping
was used to avoid overfitting by monitoring the categorical
cross-entropy loss on the validation set. The held-out test set
comprises randomly selected 25% images from the dataset.

tmax = 100× (2.5max((ep−100) , 0)) (1)



η = ηmin + (ηinit − ηmin)×
1 + cos

(
π ep

tmax

)
2

(2)

For the second part, experiments are performed with
similar settings as before, on all three datasets with all pos-
sible combinations of {hFC1, hFC2} with hFC1 ∈ {64,
128, 256, 512, 1024, 2048, 4096} and hFC2 ∈ {0, 64, 128,
256, 512, 1024, 2048, 4096}. Here, 0 units in hFC2 would
mean that we have completely omitted that layer. These ex-
periments are done to fully understand the role of top dense
layers in the case of cloud image classification using TL.

4. RESULTS

Table 1 shows that the transfer learning-based VGG-16 model
gave results on par or better than the state-of-the-art models
with significantly fewer epochs. Furthermore, reducing the
number of neurons in the hFC layers also leads to a significant
improvement in accuracy.

For the second part, Fig. 4 shows the heatmap of the ac-
curacies obtained on the test set for the SWIMCAT dataset.
Lighter hues (indicating better results) can be clearly seen
in the top-left half of the heatmap. This means that for the
SWIMCAT dataset, adding more neurons in the hFC layers
of VGG-16 could lead to overfitting. Additionally, darker
hues at the very top-left corner indicate that over-reducing the
number of these neurons might lead to excessive information
loss.

Similarly, the heatmaps that were obtained in the CCSN
and GCD datasets are shown in Fig. 5. Remember that the
number of classes is higher in the CCSN dataset and that it
consists of more complex images. Therefore, in contrast to
Fig. 4, lighter hues can now be seen in Fig. 5(a) when the
number of neurons in the hFC layers was higher, that is, in the
bottom-right half of the heatmap. Contrary to larger accuracy
variations in SWIMCAT and CCSN, the variations for GCD
dataset, upon changing the number of neurons in hFC1 and
hFC2 layers, are very small. This is probably because of the
large size of the GCD dataset.

Overall, it can be noted that the results for the optimized
TL model are comparable to the state-of-the-art for GCD
(88.3% on 6-classes by TL as compared to 84.3% on 7-
classes by Liu et al. [5]); possibly worse on CCSN; but much
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Fig. 4: Heatmap showing the grid-search results obtained on the
SWIMCAT dataset when different models were trained with differ-
ent combinations of neurons in the hFC1 and hFC2 layers.

better for SWIMCAT (99.5% by TL as compared to 98.47%
by Wang et al.’s [9]). This shows that TL is more effective
for datasets with low cardinality like SWIMCAT.

5. CONCLUSION AND FUTURE WORK

This paper presents the effective use of transfer learning (TL)
for the cloud image classification task. The paper notes that
with TL, not only is the training time significantly reduced,
but the results are also on par with or better than the state-
of-the-art custom architectures for datasets with low cardi-
nality. Additionally, the paper performs an extensive grid
search study to understand the impact of the number of neu-
rons in the top dense layers (hFC) on the performance of TL
models. The paper notes that for simpler datasets and fewer
classes, less number of neurons are preferred in the hFC lay-
ers. Whereas for more complex datasets and more number of
classes, more number of hFC neurons produce better results.
Consequently, this paper recommends tuning for hFC neurons
in conjunction with other hyperparameters. Although this pa-
per highlights the effectiveness of TL in cloud image classi-

Network Architecture Avg. Training Time (/epoch) Number of epochs Accuracy on Test Set

CloudNet [8] 3.4 seconds 2480 96.97% (98.33%)

CloudA [9] 1.01 seconds 1000 97.47% (98.47%)

VGG−16 (hFC1 and hFC2 with 4096 units each) 1.15 seconds 1249 95.45%

TL-VGG−16 (hFC1 and hFC2 with 4096 units each) 1.15 seconds 843 96.46%

TL-VGG−16 (Only hFC1 with 512 units) 1.12 seconds 648 99.49%

Table 1: Average time per epoch and number of epochs that were required during training of the different deep CNN architectures on the
SWIMCAT dataset. The accuracy of the test set is also reported in the last column. The prefix TL- means that transfer learning was used in
that case. Values within parentheses ‘()’ indicate the accuracy on the test set that is claimed by the original authors.
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(a) Grid-search results over CCSN
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Fig. 5: Heatmap showing the accuracy results obtained on the (a) CCSN and (b) GCD datasets when different models were trained with
different combinations of neurons in the hFC1 and hFC2 layers.

fication problems with proper hyperparameter tuning, the au-
thors would like to extend this study to other standard deep
learning models apart from VGG-16. Also, it will be inter-
esting to see if the importance of the number of hFC neurons
persists in other architectures such as ResNet, Inception, and
Xception.
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