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ABSTRACT
Fine scale cloud monitoring using ground-based imagers is
becoming popular for a variety of applications and domains.
We present a framework for cloud base height estimation
using two such imagers; our method is based on stereoscopic
scene flow. We demonstrate the feasibility of our approach
and use computer-generated images with controlled cloud
height to validate the accuracy of our method.

Index Terms— WAHRSIS, ground-based sky camera,
cloud altitude, cloud motion, scene flow

1. INTRODUCTION

A precise localization of clouds in the atmosphere is re-
quired for several applications. The energy production of
solar panels greatly depends on solar irradiance: due to its
intermittency, operators need a precise short-term forecast
of the cloud coverage above solar plants to take preventive
actions before a ramp-down. Similarly, air-to-ground or air-
to-air communications through the atmosphere suffer from
attenuation due to rain, clouds, atmospheric particles, and wa-
ter vapor [1]. Accurate information about cloud formations
along the signal path is key to better understanding these
phenomena.

Localizing clouds in 3D space is a challenging task.
Clouds usually do not exhibit precise boundaries and may
not have distinctive textures, which makes matching two im-
ages difficult. However, clouds evolve slowly, and successive
frames look similar.

We present a new method to estimate the cloud base
height from a succession of images captured by ground-based
imagers with a hemispherical view of the sky. We use stereo-
scopic scene flow, which is defined as the three-dimensional
motion field of points in the world [2]. This allows us to
retrieve the 3D location as well as the motion of the clouds,
by incorporating past frames in the computation. Although
we focus on the 3D location (i.e. cloud base height) in this
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work, the motion information can be used as input for cloud
movement prediction.

We propose a complete workflow to apply a three-
dimensional scene flow algorithm in the context of cloud base
height estimation. We apply our method on high-resolution
images captured by WAHRSIS, our custom made whole sky
imagers [3, 4], and on computer-generated images with user
defined cloud parameters. The latter constitute a precise
ground truth to evaluate the accuracy of our approach.

Section 2 presents related work on cloud base height esti-
mation and scene flow. Section 3 details the workflow of our
method. The validation using computer-generated images is
described in Section 4. Conclusions and future work are pre-
sented in Section 5.

2. RELATED WORK

Allmen and Kegelmeyer [5] compute cloud base height from
a pair of whole sky imagers using correlation of images rec-
tified by a pseudo-Cartesian transformation and optical flow
fields along successive images. Seiz et al. [6] match points
extracted with Förstner and Harris operators from two dif-
ferent cameras with fish-eye lenses. They use least-squares
matching and introduce a hierarchical pyramid-based ap-
proach based. Kassianov et al. [7] compute the overlapping
area between two images from a pair of ground-based im-
agers using a merit function. They derive the height of the
clouds from the size of this overlapping area, which results in
one value per image pair. Peng et al. [8] use three total sky
imagers for 3D cloud detection and tracking. They assume
clouds have only planar motion vectors and define an objec-
tive function to be maximized based on both motion tracking
and height estimation.

The concept of 3D scene flow was first introduced by
Vedula et al. [2]. Popular methods for computing scene flow
include Huguet and Devernay [9], who couple optical flow
and dense stereo matching via partial differential equations;
Li and Sclaroff [10], who introduce probability distributions
for optical flow and disparity; and Cech et al. [11], who re-
duce the computational complexity using seed growing.



3. WORKFLOW

This section describes the workflow of our proposed ap-
proach. It takes as input a sequence of images taken simulta-
neously by two sky imagers, such as those shown in Fig. 1.
They were taken by a pair of our custom-designed whole sky
imagers [3, 4], which we call Wide-Angle High-Resolution
Sky Imaging System (WAHRSIS), and are part of a sequence
of 3.5 minutes, with an image taken every 10 seconds. The
two imagers are placed approximately 95 meters apart on
rooftops of the Nanyang Technological University in Singa-
pore.

Fig. 1: Images captured by the pair of sky imagers.

3.1. Undistortion

The first step consists of removing the distortion due to the
fish-eye lens in the images. The projection behavior of the
lens used in our imagers follows the equisolid angle mapping
function, r = af sin(θ/2), where r is the distance from the
image center, θ is the elevation angle of the incident light ray,
f is the focal length, and a is a constant. We thus can retrieve
the incident light ray of every pixel in the image. The position
along that ray is the value which needs to be computed by
triangulation to find the position of the cloud in 3D. Fig. 2
shows the original image and the pixel values projected on a
hemisphere.

We use a ray-tracing approach to generate undistorted im-
ages. Considering the camera at the origin, we place a virtual
plane at a user-defined height. We then compute the pixel
values of the image by looking for the incident light ray that
intersects the plane at the pixel location, as shown in Fig. 2.
There is usually no ray going through an exact pixel location,
so we interpolate using the nearest rays.

In order to map this image to real world coordinates, we
give each pixel a width of one meter. We then define the
height of the plane to be at 400 meters, which translates to
a viewing angle of 103 degrees.

3.2. Rectification

We use the real world units defined above to place the image
plane of the second imager with respect to the first one. In
practice, the positions of the imagers can be retrieved by GPS.

Fig. 2: Illustration of the undistortion process of an image
taken with our fish-eye lens (bottom). The color value of each
incident light ray is projected on a hemisphere (middle). The
image plane (top) is computed as the value of each light ray
going through the pixel at its location (as indicated at the cor-
ners of the image).

Stereo vision algorithms typically compute the disparity be-
tween the left and right images along one axis only in order to
reduce the complexity. For this, the input images need to lie
on a common image plane. The process of computing such
images is known as rectification.

We incorporate this step into the undistortion process de-
scribed above. We apply 3D rotations on the virtual image
plane before computing the pixel values, as shown in Fig. 3.
Two rotations are needed. The first one is applied around the
z axis and relates the difference of longitude and latitude be-
tween the imagers, quantified with the azimuth angle φ. The
second rotation is applied around the rotated y axis and re-
lates the difference in altitude between the imagers, which is
quantified with the elevation angle θ.
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Fig. 3: Illustration of the rectification process. The two
coloured dots represent the two imagers with their respective
image planes. The disparity between the images only appears
along one axis after rectification.



Fig. 4 shows both pairs of undistorted images before and
after rectification. Notice how the disparity between the im-
ages is only present along the horizontal axis in Fig. 4b.

(a) Before rectification (b) After rectification

Fig. 4: Image pair before and after rectification.

3.3. Disparity Map

The next step is to compute the disparity map between the
sequence of pairs of undistorted, rectified images. We use the
three-dimensional scene flow algorithm proposed by Cech et
al. [11], which jointly estimates a disparity map and optical
flows between stereo image frames.

The strength of the scene flow approach is the inclusion of
past frames into the computation of the disparity map. While
clouds do not have many distinct features to track, they evolve
slowly. Successive frames taken at appropriate intervals in-
deed do not exhibit large differences, and past frames can thus
complement the information provided in the current frame.

Fig. 5 shows the disparity map computed from the pair of
images shown in Fig. 4b. Each pixel value of the disparity
map indicates the shift to add to the horizontal image coor-
dinate to obtain the position of the pixel capturing the same
physical point in the other image. Note that the algorithm
does not define values over the whole image, as some parts
do not exhibit sufficient texture or do not look similar in the
two images due to the different viewpoints.

Fig. 5: Disparity map for the image pair in Fig. 4b.

3.4. 3D Point Cloud

The last step consists of mapping the disparity map to real
world 3D coordinates. For every defined value of the disparity
map, we compute the position of that point on both rectified
images in the image plane, as shown by the red and blue dots

in Fig. 6. We then consider the two rays going through those
points and the device position. Those two rays intersect at the
real world location of the captured point, shown in green in
Fig. 6.
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Fig. 6: Illustration of the computation of a point in 3D.

Fig. 7 shows the resulting point cloud for an image pair
from the sequence. We distinguish two different clusters: The
first is at an altitude of about 700 meters and corresponds
to the cumulus cloud at the bottom right of the input image,
while the second represents the higher cloud layer appearing
at around 3000 meters.
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Fig. 7: 3D point cloud computed for a pair of images from
the sequence.

4. VALIDATION

Since it is very difficult to measure the actual 3D location
and shape of clouds, we use computer-generated images
with a user-defined cloud bottom altitude for validating our
approach. We use Blender,1 an open-source 3D computer
graphics program, for creating images using a procedural
cloud shader and a model of the fish-eye lens of WAHRSIS.
While being simpler than the reality, these images do have
the advantage that the positions of the imagers and clouds can
be user-defined.

For this experiment, we created a sequence of 21 frames
with a cloud moving over the two cameras. The average cloud
bottom altitude is 500 meters, and the distance between the
cameras is 400 meters. Fig. 8 shows an example of such an
image pair.

1 http://www.blender.org/

http://www.blender.org/
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Fig. 9: 3D point cloud for an image pair computer from the computer-generated sequence. The bounding boxes in which
Blender generates the cloud are shown in green. The two black dots indicate the position of the imagers.

Fig. 8: Image pair from the computer-generated sequence.

Fig. 9 shows the resulting 3D point cloud for an image
pair from the computer-generated sequence. It matches with
the ground truth created by Blender. Averaging over the entire
sequence, 82.4% of the reconstructed 3D points lie inside the
bounding box in which the cloud is generated.

5. CONCLUSIONS

In this paper we have applied 3D scene flow to cloud base
height estimation. We have introduced a workflow to a com-
mon scene flow algorithm in this context, which we validated
with computer generated images.

Using sky imagers requires several calibration and align-
ment steps. In practice, the imagers are not perfectly horizon-
tal and oriented towards a known azimuth angle. The GPS po-
sition measurements are also not accurate enough, especially
for the altitude. We used manual calibration procedures to
produce the results presented here, which we did not describe
in this paper. Our current work includes the automation and
the improvement of those procedures. This is needed to com-
plement the primary results described in this paper with an
extensive validation of the method on real images.

We will also conduct simulations with other distances be-
tween the imagers and cloud bottom altitudes in order to de-
termine an optimal set-up of the imagers.
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