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Abstract—Social attention behavior offers vital cues towards
inferring one’s personality traits from interactive settings such
as round-table meetings and cocktail parties. Head orientation is
typically employed as a proxy for determining the social attention
direction when faces are captured at low-resolution. Recently,
multi-task learning has been proposed to robustly compute
head pose under perspective and scale-based facial appearance
variations when multiple, distant and large field-of-view cameras
are employed for visual analysis in smart-room applications. In
this paper, we evaluate the effectiveness of an SVM-based MTL
(SVM+MTL) framework with various facial descriptors (KL,
HOG, LBP, etc.). The KL+HOG feature combination is found
to produce the best classification performance, with SVM+MTL
outperforming classical SVM irrespective of the feature used.

I. INTRODUCTION

Social attention behavior, characterizing how a person
attends to the immediate peers and surroundings during a social
interaction, have been shown to be an extremely effective
behavioral cue for decoding his/her personality traits in social
phycology. For example, extraverts who tend to be gregarious
and friendly, have been found to attract significant social
attention from their peers in group meetings [1]. Similarly,
dominant or aggressive persons are found to give more social
attention to the other person while speaking, but less attention
while listening in dyadic interactions [2].

Typically, two types of interactive settings have been stud-
ied by social psychologists to derive observations such as the
above. Round-table meetings where participants are assessed
as they discuss/enact a pre-defined situation as they are seated,
or informal gatherings such as cocktail parties, where persons
are free to move around and act spontaneously. Apart from
high-level differences between these two scenarios (e.g., a pre-
defined agenda for meetings results in participants explicitly
or implicitly assuming certain roles, which may preclude
expression of their typical behavior, while parties involve
hedonistic interactions allowing more freedom to express one’s
behavioral traits), they also differ with respect to the amount of
observable visual information. Given the relatively stationary
nature of meeting scenes, it is possible to closely observe
participants’ social attention patterns through webcams placed
directly in their front, while the fact that they can move around
freely in parties only allows for behavioral monitoring using
distant, large field-of-view cameras installed on the walls of a
smart-room setting.

Consequently, cues employed to determine one’s social at-
tention direction also vary for the two scenarios— when a high-
resolution image of the face can be captured using near-field
webcams (Fig. 1(a)), computing the point-of-gaze on top of
the head orientation can improve social attention estimates as
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observed in [3]. On the other hand, when only low-resolution
face images can be captured with far-field cameras, head pose
is considered as a reliable proxy for determining the direction
of social attention [4], [5]. Nevertheless, when only 50 x 50 or
lower resolution faces are observable as in Fig. 1(b), estimating
head pose, even with multiple cameras, is challenging due to
the following reasons: (1) Blurred appearance of faces means
discriminative features and classifiers need to be employed to
obtain even a coarse head pose estimate (we consider eight
class head pan classification in this paper, with each class
denoting a 45° pan range), and (2) Facial appearance of a
person (or target) with the same relative 3D head-pose, but
at two different spatial locations varies considerably due to
perspective and scale changes. As the target moves, the face
can appear larger/smaller when it is closer to/farther away from
the camera, and face parts can become occluded/visible due to
the target’s relative position with respect to the camera.

A number of methods have been recently proposed to
estimate the head pose of moving targets, for which acquiring
extensive training data is impractical or prohibitively expen-
sive. Head orientation is determined based on the location
of the face in the unfolded spherical texture map in [6]. A
domain adaptation approach where patch weights denoting
their saliency for pose classification is learnt from source
examples corresponding to stationary targets, and adapted to
the target scenario involving mobile targets using few target
examples is proposed in [7]. A third approach proposed in [8]
utilizes weakly-labeled data for model training by automati-
cally obtaining head pose labels from walking direction labels,
and trains multiple region-specific classifiers upon spatially
segmenting the scene into multiple regions employing unsu-
pervised spectral clustering.

A multi-task learning approach to robustly handle face
appearance changes with target position was recently proposed
in [9]. Based on the idea that there would some similarity in
facial appearance for adjacent spatial regions as well as region-
specific appearance differences, this method seeks to learn
optimal partitioning of the physical space based on camera
geometry-based and pose-based face appearance relationships,
so that the facial appearance for a given pose is similar across
each of the final partitions. Use of multi-task learning which
learns relationships between a set of similar tasks is shown
to produce superior classification performance than classical
SVM and other state-of-the-art pose classification methods.

This paper seeks to provide the reader with information
which is additional and complementary to that presented
in [9]. The suitability and specificity of various descriptors for
different computer vision tasks in well-known. While the su-
periority of multi-task learning against competing approaches
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Fig. 1. Social attention analysis from meeting vs party scenes. (a) Overview of
the sensing framework employed in [1] for analyzing round-table meetings.
Webcams S1-S4 placed in front of each participant capture high resolution
images from which head pose and point-of-gaze can be estimated. (b) On the
other hand, face images acquired from far-field cameras monitoring cocktail
party scenes are blurred, and facial appearance can vary for identical 3D head
pose depending on the target position due to perspective and scale changes.

is demonstrated using HOG features in [9], we evaluate the
performance of an SVM version of MTL (SVM+MTL) with
a gamut of features including HOG, LBP, KL, skin color
and their combinations. Our experimental results confirm the
superiority of SVM+MTL over classical (or single-task) SVM
irrespective of the descriptor used, with the best classification
results obtained for the KL+HOG feature combination. Also,
as demonstrated in [9], superior classification is achieved with
multi-view features as compared to single-view features, and
effectiveness of the MTL framework is most pronounced when
only few training examples are available.

The paper is organized as follows. We review related work
in Section II. Section III describes the SVM+MTL framework,
while Section IV outlines the application of SVM+MTL for
estimating the head pose of moving targets. Experimental
results are discussed in Section V, while Section VI presents
concluding remarks.

II. RELATED WORK

This section presents an overview of previous works in the
areas of (i) head-pose classification with low-resolution images

and mobile targets, and (ii) multi-task learning.

A. Head-pose classification with low-resolution images

While head pose estimation from high-resolution images
has been studied extensively over a decade [10], determining
head orientation from surveillance images has been attempted
only recently. Pose classification from crowded surveillance
videos is presented in [11], where a Kullback-Leibler distance-
based facial appearance descriptor (KL) is found to be more ro-
bust than explicit skin and hair segmentation for low-resolution
images. The array-of-covariances (ARCO) descriptor is pro-
posed in [12], and is found to be effective for representing
objects at low-resolution and robust to scale and illumination
changes. However, both these works address pose classification
from monocular views, which is often insufficient for studying
people’s behavior in open spaces.

Works that have attempted pose classification fusing infor-
mation from multiple views are [13], [6], [14], [15]. A particle
filter is combined with two neural networks for pan and tilt
classification in [13]. Also a HOG-based confidence measure is
used to determine the relevant views for classification. In [14],
multi-class SVMs are employed to calculate a probability
distribution for head-pose in each view, and these results are
fused to produce a more precise pose estimate. Nevertheless,
both these works attempt to determine head-orientation as
a person rotates in place, and position-induced appearance
variations are not considered.

B. Head pose classification with moving targets

One of the first works to attempt head pose estimation
with moving persons is [6], where face texture is mapped
onto a spherical head model, and head-orientation determined
based on the face location in the unfolded spherical texture
map. However, many camera views are required to produce an
accurate texture map, and nine cameras are used in this work.
A transfer learning framework to compute head pose of moving
persons along with a dataset of head orientation measurements
for mobile targets is proposed in [7]. Upon learning the
saliency of face patches for pose classification from many
examples corresponding to stationary targets, these weights are
adapted through online learning involving a few examples with
moving targets. The adaptation procedure involves modulating
the original patch saliency using a reliability score, which
quantifies distortion in appearance of the face patch as a
function of target position and the camera geometry. Upon a
priori splitting the space into a number of regions, classifiers
are independently learnt for each region given the dependence
of patch reliability on target position— however, a pre-defined
division of space and learning of independent classifiers is not
necessarily optimal as shown in [9].

A scene-adaptive head pose estimator framework that does
not explicitly require any training data annotation is proposed
in [8]. First, labeled head pose data is automatically generated
from the output of a person tracker denoting walking direction,
and in order to tackle appearance variation with target position,
the scene space is automatically segmented into multiple
regions employing unsupervised spectral clustering, which
generates clusters with high intra-cluster and low inter-cluster
similarity. Finally, independent, region-wise pose classifiers are
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Fig. 2.

SVM+MTL-based head pose classification for mobile targets: In the pre-processing stage, a particle filter tracker incorporating multi-view geometry

information is employed to reliably localize targets’ faces and extract face crops for each view. Also, the tracker allows for determining which region in space the
test sample corresponds to, so that the appropriate region-based pose classifier can be invoked. Features extracted from the multi-view face appearance images
are fed to the MTL module for training/classification. Classification is attempted with a number of pixel and patch descriptors in this work.

learnt to achieve improved classification accuracy— again, joint
learning of classifiers is shown to be more beneficial in [9].
In [9], a multi-task learning (MTL) framework for head pose
classification of mobile targets is proposed. Joint learning of fa-
cial appearance across scene regions as well as region-specific
appearance variations using a graph-guided MTL framework
is shown to produce optimal pose classification performance.
The learning algorithm is guided by two graphs a priori
defining appearance similarity between (1) scene regions based
on camera geometry, and (2) head pose classes, to flexibly
learn the optimal space partitioning (set of related tasks). In
this paper, we evaluate the effectiveness of an alternative MTL
formulation based on SVMs (SVM+MTL), which assumes that
all tasks are related.

C. Multi-task learning

Multi-task learning (MTL) represents a specific instance
of learning with structured data (LWSD), where the training
data is a union of t related groups. The difference between
LWSD and MTL is that the group membership of the test
sample needs to be known a-priori for MTL, while it need
not be provided for LWSD. When the test sample’s group
membership is known (or can be determined), MTL assumes
learning of the t data groups to be equivalent to learning
t related tasks, and seeks to learn a decision function that
minimizes the expected loss for each task.

MTL seeks to simultaneously learn the commonality [16]
as well as the differences between the ¢ tasks which leads
to a better model for the main task (union of ¢ tasks) as
compared to a learner that does not consider task relationships.
Convex multi-task feature learning imposing a trace norm
regularization is proposed in [17]. Single-task (standard) SVM
is extended through a regularization framework in [18], where
the classifier comprises a common decision function and a
task-specific correction function. However, the decision and
correcting functions are in the same feature space. This model
is improved to a more flexible form where the decision and
correction spaces are different in the SVM+MTL framework
proposed in [19]. We novelly apply the SVM+MTL framework
for head-pose estimation, and a detailed algorithm description
is provided in the following section.

III. THE SVM+MTL FRAMEWORK

An MTL framework extending support vector machines
(SVMs) to the situation where the training set 7 is the the

union of task specific sets 7, = {x;,, yir}li; | is presented in
[18]. For each task the learned weights vector is decomposed
as w+ w,, r € (1,2,...,t) where w, w, respectively model
the commonality between tasks and task specific components.
Following [18], the SVM+MTL framework is proposed [19].
The associated optimization problem is formulated as follows:

¢ t 1y
min TwTw + g YN wlw,. +C > S &,
w,W1,...,Wwt,b,d1,...,d¢ r=1 r=1i=1
s.t. yir(wT¢(wir) +b+ wz(br(wzr) + dr) >1- gira
€r >0, i=1,... 0, r=1,...,t

Here, all w,-’s and the common w are learnt simultaneously. 3
regularizes the relative weights of w and w,.’s. &;,.’s are slack
variables measuring the errors w,.’s make on the ¢ data groups,
each comprising [/, training samples. y;,’s denote training
labels while C' regulates the complexity and proportion of
nonseparable samples.

The goal of SVM+MTL is to find ¢ decision functions
fr(@) = wle(x) + b+ wle.(z) +d.,r = 1,...,t. Each
decision function f,. comprises two parts: (a) the common
weights vector w with bias term b, and the group-specific
correction function w, with bias term d,. SVM+MTL [19]
improves over regularized MTL [18] on two counts: (i) In
regularized-MTL, the common and the task specific functions
share the same feature space (¢), while they may be different
in SVM+MTL and (ii)) SVM+MTL considers a more general
form of the decision function with bias terms (b, d,.).

Introducing the Lagrangian multipliers o, p, the dual ob-

jective function is:
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To eliminate the primal variables from the dual form, we set
the Lagrangian derivative with respect to w, w,., b, d,- to zero.
The dual form of the optimization problem then becomes:
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The multi-task SVM is a quadratic programming (QP) prob-
lem. We adopt generalized sequential minimal optimization
(SMO) [19] to solve this optimization problem. Based on
Karush-Kuhn-Tucker (KKT) conditions, w, w, can respec-
tively be expressed in terms of training samples as:

! I
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The decision function for task r is:
l 1 I,
fr(:‘c) = Z azyzr(é(mz)(b(w)"i_b"‘rg Z aiyi¢r (wz)¢r(m)+dr
i=1 i=1

IV. HEAD-POSE CLASSIFICATION UNDER VARYING
TARGET POSITION

An overview of head-pose classification usng SVM+MTL
is presented in Fig. 2. Similar to previous works such as [7],
[9], the proposed approach relies on a multi-view, color-based
particle filter [20] to compute the position of a target and obtain
an accurate estimate of the head location. A dense 3D grid (of
size 30 cmx30 cmx20 cm with 1cm resolution) of hypothetic
head locations is placed around the estimated 3D head-position
provided by the particle filter as in [9]. Assuming a spherical
model of the head, a contour likelihood is then computed for
each grid point by projecting a 3D sphere onto each view
employing camera calibration information. The grid point with
the highest likelihood is then determined as the face location.
It is worth noting that accurate face localization is crucial in
the considered scenario where targets can move around freely.

Following localization, the face is cropped and resized
to 20 x 20 pixels in each view. A second phase involves
the computation of multi-view features that can effectively
describe the facial appearance for pose classification. In each
view, the face image is divided into n, x m, overlapping
patches (we consider n, = m, = 8 and a step-size of 4
between two patches in our experiments), and corresponding
patch descriptors are computed. In this work, we specifically
the following features:

e  Histogram of Oriented Gradients (HOG) [21] are pop-
ular descriptors for low-resolution head-pose estima-
tion. In our experiments, 144-dimensional (16 blocks
x 9 bins) HOG features are used.

e  Kullback-Leibler Divergence (KL) features [11] used
as similarity distance maps by indexing each pixel
with respect to the mean appearance templates of
different head pose classes.

e Local Binary Pattern (LBP) [22], which is a simple
and efficient texture operator that labels image pix-
els using binary values, by thresholding them with
respect to their neighborhood. In our experiments,

256-dimensional (16 cells x 16 bins) LBP histogram
features are used.

e  Skin color pixels which constitute an important cue
for headpose estimation in low-resolution images, and
have been widely used in previous works [23]. We first
detect skin region in images using a Gaussian mixture-
based skin color model. We divide images into 4 x 4
cells and count the number of skin pixels in each cell.
Then, a 16-dimensional feature vector is constructed.

Once the features are computed for each view, the asso-
ciated descriptors are concatenated and fed to a classifier for
head pose estimation. In this paper, we divide the scene space
into ¢t (=4) regions and use SVM+MTL to train ¢ region-
based pose classifiers. At test time, the tracker allows for
determining which region in space the test sample corresponds
to, so that the appropriate region-based pose classifier can
be invoked. The advantage of adopting a MTL strategy is
intuitive: we expect that even if only few training samples are
available for each region, the use of MTL can compensate
by transferring discriminative information from one region
(task) to the others. This allows for enhanced classification
performance as confirmed by our experimental evaluation
presented in the following section.

V. EXPERIMENTS AND RESULTS

This section presents experimental results (a) to evaluate
the performance of SVM+MTL against classical/single-task
SVM and (b) to investigate the impact of different features and
training set sizes on classification performance. For our evalu-
ation, we consider the publicly available DPOSE database [7]
(Fig. 3). This dataset has been compiled for benchmarking
head-pose classification performance under target motion, and
contains over 50000 4-view synchronized images of 16 moving
targets with ground-truth head-pose measurements acquired
using an accelerometer, gyrometer, magnetometer platform.
Our task is to assign the test head pose to one of eight classes,
each denoting a quantized 45° (360/8) head-pan.

To train the MTL classifier, we divided the room into four
quadrants (Fig. 3) and for each quadrant, requisite number of
training samples per class were randomly selected. Presented
results denote the mean classification accuracy obtained with
five such randomly chosen training sets.

The linear kernel K (z;, z;) = 2! z; was used for modeling
the shared space among tasks, while the Gaussian kernel
Kg(xi, xj) = exp(— |z; — xj|2 /20%) was employed for mod-
eling the task-specific feature space. The optimal values of
parameters C, 3 and o were determined upon tuning from
{0.01, 0.1, 1, 10, 100}. Also, we used the ‘one-vs-all’ method
for extending binary classification to multi-class.

The first experiment involved training the SVM-MTL with
30 images/class/region and testing with images from all re-
gions. This is equivalent to testing the classifier on the union of
t data groups. Fig.4 presents classification accuracies achieved
with (i) SVM+MTL, (ii) single-task (standard) SVM and (iii)
regularized MTL (rfMTL) [18] employing different features.
For rMTL, the linear kernel is used to map training data onto
the common and task specific spaces. From the figure, we can
observe the following:



Fig. 3. Exemplar image from the DPOSE dataset (top). Green colored
cone denotes head pose direction, while automatically extracted face crops
are shown on the top-right insets. Considered scene space division (bottom)

e The KL 4+ HOG combination produced the highest
classification accuracy. Among individual features, KL
and LBP descriptors were respectively found to be
most and least effective.

e  SVM+MTL achieved the best classification in all-but-
one cases, implying that having different common and
specific feature spaces is beneficial.

e Interestingly, performance gains with rMTL and
SVM+MTL were higher for those features for which
standard SVM performed poorly. For example, with
the HOG descriptor, classification accuracy improved
from 55% to 80% with SVM+MTL. This observation
demonstrates that learning the commonality as well
as differences between related tasks is beneficial as
compared to learning them independently, and echoes
what is reported in other multi-task learning works
such as [9].

Table I compares classification performance obtained with
single-task SVM (STS) and multi-task SVM (MTS) when
the MTS was trained with samples from all regions (30
samples/class/region x 8 classes X 4 regions), while the
test set comprised images exclusively acquired from one of
R1-R4. For fair comparison, we trained the STS with only
images arising from the same region as the test set. This
was to evaluate the performance of MTL for the rt" task,
r=1,...,t. Here, MTS outperformed STS comfortably with
performance improving by over 20% in some cases, thereby
demonstrating the power of MTL to efficiently learn task-
specific data differences. The highest classification accuracies
were again achieved with KL + HOG features, for which
MTS consistently outperformed STS by over 10%. We also
compared MTS with the state-of-the-art ARCO [12] pose
classifier. As for STS, ARCO was trained exclusively with
the (test) region-specific images. ARCO produced comparable
classification performance only when trained with 12 dimen-
sional covariance features incorporating pixel locations (z,y),
color (R, G, B), Gabor coefficients at four orientations, gray-
scale gradients I, I, and gradient orientation OG.

Finally, the effects of varying the training set size and using
only one of the four camera views are presented in Fig. 5,
6 respectively. We gradually increased the training set size

TABLE 1. PERFORMANCE COMPARISON OF SINGLE-TASK SVM
(STS), MULTI-TASK SVM (MTS) AND ARCO [12] WHEN ALL
TEST IMAGES ARISE FROM ONE QUADRANT (FIG. 3(B)).

[ | R1 | R2 I R3 I R4 |
STS | MTS | STS | MTS | STS | MTS | STS | MTS
HOG 50.8 | 784 | 60.1 | 81.6 | 639 | 78.6 | 60.3 | 785
LBP 66.6 | 714 | 69.5 | 749 | 70.0 | 714 | 609 | 67.5
KL 766 | 851 | 773 | 891 | 848 | 874 | 732 | 84.0
HOG+SKIN 757 | 848 | 836 | 882 | 77.8 | 859 | 772 | 85.1
LBP+SKIN 724 | 834 | 809 | 873 | 780 | 863 | 744 | 83.6
KL+HOG 766 | 863 | 798 | 89.1 | 832 | 892 | 748 | 852

[ ARCO I 6.2 [ 80.2 I 873 I 89.0 ]

from 1-30 samples/class/region and computed classification
performance on the test set comprising samples from all
regions (as for the first experiment). For training set sizes of
less than 5 samples/class/region, STS slightly outperformed
MTS. This is because MTS requires sufficient samples to
effectively learn the commonalities and differences between
the tasks- learning is affected when there are too few samples.
Nevertheless, when the training size was increased further,
MTS comfortably outperformed STS and the performance gap
increased with larger training sizes.

We also analyzed how the ARCO descriptor [12] performed
with varying training set sizes. Sophisticated methods like
ARCO also require enough samples to learn an effective
model. E.g., when 5 training samples/class/region were used,
random classification accuracy was obtained with ARCO as
against 75% with STL/MTL. This demonstrates that multi-task
learning effectively works with small training sets. Figure 6
presents accuracies obtained with KL + HOG features com-
puted for all four views, as against features computed for only
one of the four views (mean of the accuracies obtained with
each of the four views is considered here). Expectedly, higher
classification accuracy is obtained with the four-view features.
Also, the performance gain with MTS over STS is higher when
single view features are used for training- performance gains
of over 10% and 20% are respectively observed with MTS
with four-view and single-view features.

Summarizing the observed results, the proposed
SVM+MTL framework outperforms both single-task SVMs
and regularized MTL irrespective of the facial descriptor used,
implying that it is important to consider both appearance
similarity across regions, and region-specific appearance
variations while attempting head pose classification under
changing appearance due to target motion. Nevertheless,
comparable accuracies are achieved with the SVM+MTL and
ARCO approaches, when 12-dimensional covariance features
are used. Superior classification accuracies are achieved using
the MTL framework described in [9] with respect to ARCO.
In this respect, a key difference between SVM-MTL and the
FEGA-MTL proposed in [9] is that FEGA-MTL attempts
to learn the set of related tasks, whereas the SVM+MTL
formulation assumes that all tasks are related. If some tasks
are actually unrelated, knowledge sharing can negatively
impact model performance.

VI. CONCLUSION

While Cocktail parties allow for more naturalistic social
behavior in comparison to round-table meetings, they are
challenging for analyzing social attention behavior from visual
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The SVM+MTL framework is shown to robustly estimate

orientation under target motion characteristic of party

scenes, which can then be used to determine social attention
direction in behavioral studies. Future work involves extending
SVM+MTL for flexibly learning related tasks as in [9], and
exploiting pre-created models as in [7] to obviate model re-
synthesis for novel data.
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