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ABSTRACT

Many image datasets are built from web searches, with im-
ages taken by various cameras. The variance of camera
sources can lead to different camera signals and colors within
images of the same class, which may impede neural networks
from fitting the data. To generalize neural networks to dif-
ferent camera sources, we propose an augmentation method
using unpaired image-to-image translation to transfer train-
ing images into another camera model domain. Our approach
utilizes CycleGAN to create a translation mapping between
two different camera models. We show that such a mapping
can be applied to any image as a form of data augmentation
and is able to outperform traditional color-based transforma-
tions. Additionally, this approach can be further enhanced
with geometric transformations.

Index Terms— CycleGAN, Camera style transfer, Image
classification

1. INTRODUCTION

Deep neural networks achieve state-of-the-art performance in
many computer vision tasks such as image classification and
object detection. Unfortunately, neural networks require large
amounts of diverse data in order to train a useful model that
can generalize to unseen images [1]. Image data augmenta-
tion is a way to possibly achieve better generalization and pre-
vent overfitting on a given dataset. Most common approaches
employ an array of geometric and color-based transforma-
tions for this purpose [2, 3]. Additionally, with the growth
of generative adversarial networks (GAN), synthetic image
generation has become more widely used [1].

Many common image classification datasets construct
their database through web searches from various sources
[4, 5]. Such approaches introduce differences in camera sig-
nals and color between images of the same class, which may
affect the ability of a neural network to fit to the data [6].
Variance in source cameras will result in different images
despite similar scenes as a consequence of varied sensor
types, demosaicing algorithms, and other proprietary pro-
cessing done on the images [7, 8]. Such variance may cause
the neural network to equate certain camera model signals

to a specific class, overfitting the color noise. This is par-
ticularly problematic if the dataset is small, which will have
minimal variety of camera models in each class. There are
some recent studies done on creating camera-invariant data
augmentation [6, 9], however, they are not extendable to a
general image classification problem.

Our proposed approach focuses on using unpaired image-
to-image translation with CycleGAN [10] to learn the feature
space of two different camera models and construct the trans-
lation from one to another. This emulates the idea of taking a
picture of the same scene using different cameras. The trans-
lation mapping will be used in a general case, as our approach
will translate the source camera model of any original image
in a direction towards another camera model. This can be
seen as a GAN-based method of color and signal transforma-
tion on the source image. We show that our image augmen-
tation approach performs significantly better than traditional
color-based transformations in image classification problems.

2. RELATED WORK

Image data augmentation is a useful tool to increase the accu-
racy of image classification tasks [1]. It reduces the distance
between training and validation sets by representing a more
complete set of possible data points [1]. Recently, more stud-
ies have attempted to create an automatic learning strategy for
image augmentation [2, 3]. These methods employ a search
space among probability and magnitudes of common geomet-
ric and color-based transformations to augment the dataset.

In addition to geometric and color-based transformation
methods, some have explored synthetic image generation
through GANs [1]. This is especially interesting in fields
where images are scarce, such as medical imaging [11].
However, creating a GAN that generates high-resolution im-
ages from noise requires a significant amount of training
data, which leads to some research focusing on using image-
to-image translation to create reliable high-resolution image
data [12]. Image-to-image translation is the problem of trans-
lating the domain of an image from one to another [13].
CycleGAN has been a widely used translation mechanism
by various researchers for medical imaging and emotional
classification problems [1]. This is partly because CycleGAN



is able to translate domains from unpaired images, as paired
images are difficult or sometimes impossible to acquire [14].

Other research focused on the camera invariant aspects
of a neural network. [6] used CycleGAN to implicitly learn
the difference in camera views on person re-identification.
CycleGAN was able to reliably translate images from one
source camera to another, which improved the results sig-
nificantly. [9] modeled different camera effects such as chro-
matic aberration, blur, exposure, and noise. Unlike [6] which
learned camera views from a set of training data, these cam-
era effects were made into a search space of parameters to
augment synthetic data. The research showed promising re-
sults for object detection in urban driving. Following the us-
age of synthetic camera images, [15] explored ray-tracing for
the simulation of a multispectral camera pipeline to general-
ize neural networks for driving. Their research showed that
synthetic images were able to emulate the camera invariance
obtained from different cameras.

These efforts show promise in the idea of introducing
camera invariance in neural networks. Furthermore, they
highlight the possibility of using synthetic images or transla-
tion to build such invariance. However, they require a specific
problem or dataset, and are difficult to extend to a general
classification problem.

3. CAMERA MODEL TRANSLATION

3.1. CycleGAN

Our method employs CycleGAN [10] to synthetically map
images from one camera model domain to another. The trans-
lated images are then used to augment the original dataset.

CycleGAN employs two sets of GANs, creating mappings
between two image domains X and Y: X→Y and Y→X. Each
set of GANs contains its own generator and discriminator net-
work competing through adversarial training. An additional
cycle consistency loss is added to the objective, which is built
on the idea of transitivity between two sets of images. Cycle
consistency is defined as the ability to translate back to the
original domain after the first translation [10]. Therefore, if
an image is translated from domain X to domain Y, it should
be possible to translate it back to its original image in domain
X.

Cycle consistency is an important tool to ensure that the
primary features of the original image will not become dis-
torted as a result of the translation. This is critical as we want
to preserve the objects from the original image to emulate the
same scene taken from a different camera.

3.2. Pre-processing Training Data

In order to train the GAN, we need to reduce the image di-
mensions of training images. Normally, resizing and random
cropping are used for pre-processing images, however, [8] re-
ported that the accuracy of identifying camera models through

image features and color filter array drops if the images were
compressed. [16] found cropping images to be a reliable
method to reduce image dimension for camera model iden-
tification with neural networks. Drawing inspiration from
pre-processing methods from camera model identification
problems, we choose to use only cropping on the images to
reduce their dimension to 256x256.

This method of pre-processing brings two primary bene-
fits: reliable construction of color-based translation, and in-
creased training data size. The first comes from the preser-
vation of the unique color-based signals from the CCD, color
filter array, and demosaicing algorithm of a source camera [8].
The second benefit is important because of the scarce amount
of data for each specific camera model.

3.3. Source Camera Datasets

Our CycleGAN training dataset is created by combining three
different source camera identification datasets: VISION [17],
Forchheim [18] and Kaggle Camera Model Identification
Competition [19]. By compiling images from these datasets,
we were able to collate a total of 763 iPhone5c images and
521 Huawei P9Lite images. The image dimension of the
classes are 3264x2448 and 4160x3120 respectively. These
two camera models were selected as they are from a different
phone brands and camera makers, whilst having the largest
amount of data. After cropping, each image is converted to
130 and 221 cropped images for iPhone5c and P9Lite respec-
tively. The total amount of cropped images are 99,190 for
iPhone5c and 115,141 for P9Lite.

3.4. Training and Augmentation

Upon pre-processing, we map the images to two domains
based on their source camera model. These images are
sourced from various databases and contain random scenes
with little relation to one another. This is to enable the Cy-
cleGAN to automatically learn the source camera features of
both models and construct a mapping from one model to the
other. Our CycleGAN is trained with a 3-layer discriminator
and ResNet generator, with a dimension of 16 for both the
first layer of the discriminator and last layer of the genera-
tor. We utilize these parameters in line with the findings that
source camera features are easily identified through lower-
level layers [20]. We trained for 60 epochs with a learning
rate of 0.002, with the learning rate decaying from the last 30
epochs, on 30,000 images for each camera model.

The trained CycleGAN is employed as a data augmenta-
tion tool in the next step. For each image to be augmented, we
apply the CycleGAN translation for both directions (X→Y,
Y→X). The translated images are combined with the original
images to create the augmented dataset, effectively tripling
the dataset size.



4. IMAGE CLASSIFICATION EXPERIMENTS

4.1. Datasets

To verify the effectiveness of our approach in image classifi-
cation tasks, we utilize the CIFAR-100 [5] and Oxford-IIIT
Pet [21] datasets.

CIFAR-100 contains 100 classes with 500 training images
and 100 test images each with a resolution of 32x32 pixels.

Oxford-IIIT Pet dataset contains 37 species of cats and
dogs with roughly 200 images each, with a median resolution
of 500x375. This is a considerably harder dataset as com-
pared to CIFAR-100, because of the limited amount of data
and the similarity between its classes. Some species of cats
and dogs are difficult to differentiate correctly, as they share
many similar features. This makes it harder to fit a neural
network as the data points are generally closer together.

We designate 10% of each class as test images, and re-
move them from our data augmentation and training process.

4.2. Reference Network and Methods

We use the ResNet50 model from Torchvision [22] for both
datasets. The model is optimized on SGD with a learning rate
of 0.001 and momentum of 0.9, and all images are resized
to 224x224 with batch size of 32. Each of the test runs are
performed until the model converges and has no additional
accuracy gains for the last 10 epochs.

The baseline augmentation method for both datasets fol-
lows the convention for most image classification problems,
which includes random cropping, image normalization, and
random horizontal flips with 50% chance [2].

Additionally, we compare our approach to a color-based
transformation method. The color transformation is per-
formed using Torchvision’s colorjitter method. Colorjitter
contains various color transformations, including saturation,
brightness, contrast, and hue. Following [23], we utilize the
findings of [2] on CIFAR-100 sub-policies for color transfor-
mations as the parameters for colorjitter for both datasets. The
colorjitter is applied twice at every epoch and concatenated
with the baseline dataset to be in-line with our approach, with
an addition of 2 times the total number of training images.

Furthermore, as noted by [23], color transformations are
known to perform best when paired with geometric trans-
formations for CIFAR-100. Therefore, we perform an addi-
tional geometric transformation for our test on the CIFAR-
100 dataset. We combine our approach with the random ap-
plication of a geometric transformation from the set of: trans-
lation, rotation, and scaling. The transformation is applied
randomly with a 30% chance on each of our training images.
We compare our results with RandAugment [3], which con-
tains a mixture of geometric and color-based transformation.
To keep the RandAugment approach similar to our approach,
we maintain the number of transformed images at 2.

4.3. Image Data Augmentation

In order to fit the images of CIFAR-100 to our CycleGAN, we
have to increase the dimensions to 256x256. Despite the pos-
sibility of distorting the original source camera signals with
the upscaling of image size, we show that our CycleGAN is
still able to perform reasonably well in both the look and per-
formance of the images as seen in Figure 1. Transformations
A→B and B→A are consistent for both examples.

Fig. 1. Sample translation of CIFAR-100 images using our
CycleGAN. Domains A and B correspond to iPhone5c and
P9Lite respectively.

Fig. 2. Translation using an image from the original domain.



For the translation on Oxford-IIIT Pet, we use a patched
approach, wherein we crop each image to patches of 256x256.
As the image dimensions of Oxford-IIIT Pet are varied, im-
ages with dimension smaller than 256x256 are scaled up be-
fore being separated into patches. These patches are trans-
lated using our CycleGAN, and then formed back together
into the dimensions of the original image.

Because of the larger image dimensions of the Oxford-
IIIT Pet dataset, color transformation may end up creating too
much color noise in the images. Comparatively, our method
has less color noise, as seen in Figure 2.

Fig. 3. Images from the Oxford-IIIT Pet dataset modified
using our approach (left) vs. the traditional color-based ap-
proach (right), which in this case is a selection from satura-
tion, contrast, and brightness transformation.

4.4. Results

Table 1 shows the results of our experiments with our ap-
proach against the baseline, colorjitter, and RandAugment
methods. For CIFAR-100, we tested the baseline in two
ways, imitating our approach of scaling from 32x32 to
256x256 down to 224x224 and directly scaling from 32x32
to 224x224. We found no large discrepancies between the
results of the two scaling methods.

As seen from the results, we are able to achieve perfor-
mance than regular color transformations by colorjitter. In
addition, we are able to further improve the results of our ap-
proach by applying geometric transformations.

5. DISCUSSION

Reflecting the discovery by [23], pure color-based transfor-
mations will net low gains in accuracy even for CIFAR-100,
which has generally shown larger improvements from color-
based transformations [2]. In comparison, our CycleGAN
augmentation method was able to improve the accuracy of
our classification network significantly compared to the col-
orjitter method.

For Oxford-IIIT Pet, color-based transformations per-
formed even more poorly than in CIFAR-100. This is likely
because of the larger image dimensions, resulting in more

Method Loss Accuracy (%)
CIFAR-100

Baseline 2.8107 30.87 / 60.43
Baseline + Colorjitter 2.6674 33.48 / 63.38
Baseline + RandAugment 2.4689 37.50 / 67.83
Baseline + our approach 2.0570 46.81 / 77.05
Baseline + our approach
+ geometric 2.0016 56.83 / 83.57

Oxford-IIIT Pet
Baseline 3.1516 15.00 / 43.11
Baseline + Colorjitter 3.0786 15.95 / 45.41
Baseline + our approach 2.7649 24.05 / 56.90

Table 1. Validation loss and accuracy (Top 1/ Top 5) on
baseline, colorjitter, RandAugment, our approach alone, and
combined with geometric transformations on CIFAR-100 and
Oxford-IIIT Pet.

color noise from traditional color-based transformations as
seen in Figure 2. However, our method was still able to
provide significant gains in accuracy while minimizing color
noise.

It is likely that our transformation method was able to per-
form better than traditional color-based method because of the
use of deep learning. We utilized CycleGAN to learn from
images with different source camera model and color signals.
As such we were able to learn translation in the camera model
space which imitates actual scenes taken by different cam-
eras. Such an approach shows promise in helping the neural
network fit datasets with different source cameras [6, 15].

6. CONCLUSION AND FUTURE WORKS

We experimented with a novel image augmentation approach
using translation between camera model domains. By apply-
ing image-to-image translation on the camera model space,
we were able to transform the training images. Our experi-
ments showed that this approach performs better than tradi-
tional color-based augmentation methods. The images cre-
ated from our approach can be further augmented using geo-
metric transformation to achieve better results.

Further improvements to our current approach could be
envisaged by using multi-domain translations. Such methods
will allow us to translate each images to multiple different
camera models. Additionally, the model will be able to better
learn the latent camera model distribution and likely translate
the camera specific signals better. This will allow our method
to become more scalable and provide a larger search space to
robustly train a camera-invariant neural network.
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