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ABSTRACT

GANs are designed to learn a single distribution, though mul-
tiple distributions can be modeled by treating them separately.
However, this naive implementation does not consider over-
lapping distributions. We propose Mixed Membership Gener-
ative Adversarial Networks (MMGAN) analogous to mixed-
membership models that model multiple distributions and dis-
cover their commonalities and particularities. Each data dis-
tribution is modeled as a mixture over a common set of gen-
erator distributions, and mixture weights are automatically
learned from the data. Mixture weights can give insight into
common and unique features of each data distribution. We
evaluate our proposed MMGAN and show its effectiveness
on MNIST and Fashion-MNIST with various settings.

Index Terms— generative models, generative adversarial
networks, mixture models, mixture membership models

1. INTRODUCTION

Generative Adversarial Networks (GANs) [1] learn a function
that can be used to draw samples efficiently from the learnt
probability distribution. Informally, it achieves this by pitting
a discriminator and a generator against each other as an ad-
versarial game. Due to enormous interest, GANs have been
improved substantially over the past few years [2–5].

GANs are designed to learn a single distribution, though
multiple distributions can be modeled by treating them sep-
arately. However, this naive implementation does not con-
sider relationships between distributions. How then can we
use GANs to model multiple distributions in a way that dis-
covers their common and unique aspects? Fig. 1 shows an ex-
ample of two data distribution, which we would like to model
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by considering their commonalities and particularities. In-
deed, this setting corresponds to well-known mixed member-
ship models, where individual samples may belong to more
than one group [6–8].

Fig. 1. (Top) samples from two data distributions (S1: digits
0-6, S2: digits 3-9). (Bottom) MMGAN modeling: the mid-
dle component is the common part (digits 3-6), while the left
and right ones are unique aspects: digits 7-9 and digits 0-2.

Unlike most previous mixed membership models, our
method does not explicitly optimize a likelihood function,
but is an implicit generative model based on GANs. This
provides two major advantages: (i) the objective function can
be optimized without approximation such as variational ap-
proaches [6], and (ii) there is no need to use conjugate priors
to the likelihood, increasing flexibility.

We propose Mixed Membership GANs (MMGAN) which
model multiple distributions and discover their commonali-
ties and particularities. MMGAN specifically targets high-
dimensional image distributions and is one of the few in-
stances of a mixed-membership model on continuous data.
Each data distribution is modeled as a mixture over a common
set of generator distributions; mixture weights are automat-
ically learned from the data. Depending on the mixture
weights, the shared components capture the common as-



pects of the distributions, while non-shared ones capture their
unique aspects. We evaluate our method on MNIST and
Fashion MNIST with compelling results.

2. RELATED WORK

Multi-generator/discriminator GAN. Multiple generators/
discriminators have been used in order to solve various issues
with GAN. [9,10] modeled a single distribution with multiple
generators to capture different modes of the distribution. [11–
13] utilized multiple discriminators to address mode collapse
and optimization stability.
Mixture Distribution with GANs. Some of the earlier works
considered multiple generators as mixture of distributions to
model a single distribution [9,10]. [14] used mixture of GANs
to discover clusters in a distribution.
Mixed Membership Models. These models are useful where
a sample does not belong to a single cluster but multiple
ones. It has been used for topic analysis [6], genomics dis-
covery [15], scene clustering [8] etc. Their applications on
image datasets are limited. Recently, [16, 17] have utilized
adversarial learning in their model for topic analysis.
Comparison. We use multiple generators/discriminators,
however the motivation of our paper is different, namely to
learn mixed-membership modeling. Our approach is also
different from mixture distribution with GANs, as they do not
aim to learn our aforementioned objective. Conceptually, our
modeling is similar to class conditional mixture of distribu-
tions with shared components [18,19] and mixed-membership
models; though our modeling is with GANs, which makes
it possible to model high-dimensional data distributions like
images. [20] is perhaps the most similar to ours. However,
their motivation, method and experiments are different from
ours. Similarly, [16, 17] have utilized adversarial objective
for topic models, however their objective, architecture, data
modality, and task are different than ours. Specifically, their
methods are tuned for NLP, on discrete text data, while we
present a model for continuous image distributions.

3. METHOD

Background. GANs are an adversarial game between a dis-
criminator (D) and a generator (G):

min
G

max
D

V (D,G) (1)

V (D,G) = Epd(x)[logD(x)]+Epg(x)[log(1−D(x))] (2)

where pd is the data distribution, and pg is the generator dis-
tribution. The discriminator assesses a pseudo-divergence be-
tween pd(x) and pg(x). The discriminator maximizes the
divergence, while the generator minimizes it. In this way, the
generator learns to mimic the data distribution implicitly. [1]
shows that, under certain assumptions, for a fixed optimal D,
minimizing Eq. 2 for G would lead to pg(x) = pd(x).

Multi-distribution GAN. The value function, Eq. 1, can be
generalized for n distributions as follows:

min
G

max
D

V (D,G) (3)

(4)
V (D,G) = 1

n

n∑
i=1

Epdi
[logDi(x)] +

1

n

n∑
i=1

Epgi
[log(1−Di(x))]

where D = {D1, ..., Dn}, G = {G1, ..., Gn}, pdi is the i-
th data distribution and pgi is the i-th generator distribution.
Note that Di and Gj in the above equation interact with one
another only when i = j. This makes learning one distri-
bution independent from the others. Due to this property, at
equilibrium pdi(x) = pgi(x) by Proposition 1 from [1].
Mixture Membership GAN (Proposed Approach). The
above objective does not consider possible similarities be-
tween data distributions. To account for this we model each
data distribution as a mixture over a collection of generators
(components) that are shared across multiple data distribu-
tions. We effectively replace pgi as follows:

pgi =

K∑
k=1

α
(i)
k pg̃k with

K∑
k=1

α
(i)
k = 1 (5)

where α
(i)
k is a mixture weight for the k-th component (with

distribution pg̃k ) and i-th distribution. In this way, each data
distribution is modeled as a mixture of distributions. As pg̃i
are shared for all data distributions, some of them cover com-
mon parts, while others cover unique parts depending on α

(i)
k .

Each pg̃k learns only a sub-population of distributions, and
their combination at different amounts create data distribu-
tions. By substituting Eq. 5 into the second term of Eq. 4:

Epgi
log(1−Di(x)) =

K∑
k=1

α
(i)
k Epg̃k

log(1−Di(x)) (6)

Then, by substituting Eq. 6 into the second term of Eq. 4, we
come up with the MMGAN objective:

min
G,W

max
D

V (D,G,W) (7)

(8)

V (D,G,W) =
1

n

n∑
i=1

Epdi
(x)[logDi(x)] +

1

n

n∑
i=1

K∑
k=1

α
(i)
k Epg̃k

(x)[log(1−Di(x))]

α
(i)
k =

exp(ω
(i)
k )∑K

j=1 exp(ω
(i)
j )

(9)



where D = {D1, ..., Dn}, G = {G1, ..., GK}, W =
{ω(1), ...,ω(n)}, ω(i) ∈ RK are parameters for mixture
weights for the i-th distribution, pdi

is the i-th data distribu-
tion, pg̃k is the k-th generator (component) distribution.
Effect of α

(i)
k . As α(i) is a probability simplex, it affects

the relative scale of the loss for each component. Also,
as ω(i) is a minimizer of Eq. 7, α

(i)
k would be minimized

more than the other entries if the k-th component yields
a higher loss than the other components for the i-th dis-
tribution. This can be seen better from the gradients; as
∂V (D,G,W)

α
(i)
k

∝ Ex∼pg̃k
[log(1 − Di(x))], the error of α(i)

k is

proportional to loss of k-th generator over the i-th discrim-
inator. In other words, if the k-th generator yields a high
loss from the i-th discriminator, then contribution of the k-th
generator would be scaled down.
Enforcing disjointness. We wish to make each component
(pg̃k ) disjoint, so that they capture different sub-populations
of the overall distributions. To encourage disjointness, we in-
clude a classifier into the objective that aims to separate each
component from the others:

(10)max
C,G

1

K

K∑
k =1

Ez ∼pz(z)[logC(yk|Gk(z; θk);ϕc)]

where yk is a categorical label of x ∼ pg̃k(x) , and C is
a classifier that outputs the class distribution over the com-
ponents. With this objective, the classifier tries to separate
samples from different components, while the components
maximize the difference among them, similar to [21]. The
combined objective becomes:

min
C,G,W

max
D

V (D,G,W)− λ

K

K∑
k=1

Epg̃k
[logC(yk|x)] (11)

where λ is a hyper-parameter balancing the two terms.
Sampling process. Once the MMGAN is trained, samples
can be drawn from the generator distribution as follows:

• For each data distribution i:
– Draw mixture assignment k ∼ Cat(α(i))

– Draw prior distribution z ∼ pz

* Draw data samples x ∼ Gk(z)

4. EXPERIMENTS

Datasets. We investigate the working dynamics of our
method on MNIST and Fashion-MNIST [22]. With these
datasets, we construct 2- and 3-distributions by using the
class information from the datasets as per Table 1. We never
use a sample twice for the splits to avoid trivial solutions.
Network Architecture & Training. Instead of indepen-
dent generators, we use a single conditional generator with
K conditions due to efficiency. Each one is modeled as
Gi = G(z, c = i; θ), where c is a condition whose i-th
index generates Gi, and θ are the network parameters. We

interchangeably use generator and component to refer to a
specific Gi. There are n discriminators in an n-distribution
game. They share all but the last layer with the classifier;
the classifier includes one more layer on top of this with
K-dimensional output. We use DCGAN architecture [2]. Ex-
ponential moving average is used over generator parameters
as in [4, 23]. Conditioning of G is similar to [24]. We set
K = 2n − 1 in our experiments; note that the model may
collapse some components during training by assigning zero
weight to them. We use the ADAM [25] optimizer for all
networks with α = 0.0002, β1 = 0.0 and β2 = 0.9. For mix-
ture weights α = 0.0004. The optimization of discriminator
and generator follows the alternating update rule with update
ratio 1:1. We run the experiments for 100k iterations. For
each component the batch size is 32, and λ = 0.5.
Quantitative Results. As MMGAN is an unsupervised learn-
ing model, its quantitative evaluation is not trivial. To support
our qualitative experiments, we quantify the rate of correct
generation (accuracy) for each component, i.e. if a specific
item appears in the correct component (generator). As the
correspondence between generator components and their true
labels is not known beforehand, we fix mixture weights with
true priors. To measure accuracy, we use pre-trained classi-
fiers for MNIST and Fashion-MNIST. As there is no compa-
rable method in the literature, we compare against a random
baseline: the probability of a random sample appearing in the
correct component.

Fig. 2. MNIST and Fashion-MNIST results for case A.

5. RESULTS

Qualitative Results. Figs. 2, 3, and 4 show the results with
learned mixture weights for cases A, B, and C respectively
(cf. Table 1). We draw a number of samples from each gen-
erator to show what they synthesize. The weight di in each
subfigure indicates the value of the mixture weight, α(i)

k in
Eq. 8 for a component. The Figures demonstrate that each
generator captures a part of a distribution that corresponds to
unique or common parts of the distributions. For example,
MNIST of Fig. 2 illustrates 3 components where the first and



Table 1. (Top) Configurations of the datasets. (Bottom) Correspondence of labels for Fashion-MNIST.
Case Distributions Sets

A 2 S1 = {0, 1, 2, 3, 4, 5, 6}, S2 = {3, 4, 5, 6, 7, 8, 9}
B 3 S1 = {0, 3, 5, 6}, S2 = {1, 4, 5, 6}, S3 = {2, 3, 4, 6}
C 3 S1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, S2 = {3, 4, 5, 6, 7, 8, 9}, S3 = {6, 7, 8, 9}

Label 0 1 2 3 4 5 6 7 8 9
Item T-shirt/top Trousers Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

Table 2. Accuracy of each component for MNIST and Fashion-MNIST for cases A, B, and C vs. random baselines. Set
operations for case A: r1 = S1 \ S2, r2 = S2 \ S1, r3 = S1 ∩ S2. Set operations for cases B and C: r1 = S1 \ (S2 ∪ S3),
r2 = S2 \(S1∪S3), r3 = S3 \(S1∪S2), r4 = (S1∩S3)\S2, r5 = (S2∩S3)\S1, r6 = (S1∩S2)\S3, and r7 = S1∩S2∩S3.

Dataset Case r1 r2 r3 r4 r5 r6 r7 Avg Random
MNIST A 99.69 98.86 83.40 n/a n/a n/a n/a 93.98 0.5

F-MNIST A 90.15 86.48 80.92 n/a n/a n/a n/a 85.85 0.5
MNIST B 99.32 100.0 96.05 98.75 98.14 99.56 99.36 98.74 0.25

F-MNIST B 71.86 98.07 68.45 71.04 93.17 91.54 18.02 73.16 0.25
MNIST C 99.12 n/a n/a n/a n/a 93.08 93.64 95.28 0.61

F-MNIST C 94.41 n/a n/a n/a n/a 83.17 67.5 81.69 0.61

Fig. 3. MNIST and Fashion-MNIST results for case B.

Fig. 4. MNIST and Fashion-MNIST results for case C.

third components exclusively contribute to unique parts of the
distribution, while the second component is the common part
of both distributions that is digits of 3, 4, 5, 6. As our method
is unsupervised, it may not learn the smallest possible number
of components. For example, in Fig. 4, the minimum number
of components is 3, but Fashion-MNIST results converged to
4 components where the last two could have been combined.
Quantitative Results. Table 2 lists quantitative results for
the experiments above, where mixture weights are initialized
with priors as mentioned before. For ease of interpretation,
we have labeled components with set operations. For exam-
ple, for case A of MNIST, r1 = S1 \ S2 = {0, 1, 2} and the
component generates digits {0, 1, 2} correctly 99.69% of the
time. As expected, the average score for each setting is highly
correlated with the qualitative interpretations above. All the
scores are also significantly above the random baseline, which
demonstrates the effectiveness of our model. Other than the

average scores, we can analyze how well individual compo-
nents are modeled and how they compare to one another. In-
tuitively, simpler components are modeled better, e.g. case B
of MNIST S2 \ (S1 ∪ S3) is digit 1 which obtains a perfect
score, or case B of Fashion-MNIST S2 \(S1∪S3) is Trousers
which outperforms the other items.

6. CONCLUSIONS

We have proposed a novel mixed-membership model based
on GANs that can discover particularities and commonali-
ties over multiple data distributions. MMGAN models each
data distribution with a mixture of common generator dis-
tributions. As the generators are shared across multiple true
data distributions, highly shared generators (reflected through
mixture weights) capture common aspects of the distribu-
tions, while non-shared ones capture unique aspects. The
shared generators and mixture weights are learned end-to-
end together with other parameters. We have successfully
trained MMGAN on MNIST and Fashion-MNIST datasets to
show its effectiveness.

We hope to scale MMGAN to higher resolution large
number of distributions in the future, which will open up new
directions for analyzing image collections, analogous to what
topic models have enabled for document collections.
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