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ABSTRACT

Emotion recognition and understanding is a vital component
in human-machine interaction. Dimensional models of affect
such as those using valence and arousal have advantages over
traditional categorical ones due to the complexity of emo-
tional states in humans. However, dimensional emotion an-
notations are difficult and expensive to collect, therefore they
are not as prevalent in the affective computing community.
To address these issues, we propose a method to generate syn-
thetic images from existing categorical emotion datasets using
face morphing as well as dimensional labels in the circumplex
space with full control over the resulting sample distribution,
while achieving augmentation factors of at least 20x or more.

1. INTRODUCTION

Classification of basic prototypical high-intensity facial ex-
pressions is an extensively researched topic. Inspired ini-
tially by the seminal work of Ekman [1], it has made signifi-
cant strides in recent years [2, 3]. However, such approaches
have limited applicability in real life, where people rarely ex-
hibit high-intensity prototypical expressions; low-key, non-
prototypical expressions are much more common in every-
day situations. Consequently, researchers have started to ex-
plore alternative approaches, such as intensity of facial action
units [4,5], compound expressions [6], or dimensional models
of facial affect [7–9]. Yet these alternatives have not received
much attention in the computer vision community compared
to categorical models.

One major problem that impedes the widespread use of di-
mensional models is the limited availability of datasets. This
stems from the difficulty of collecting large sets of images
across many subjects and expressions. It is even more difficult
to acquire reliable emotion annotations for supervised learn-
ing. Continuous dimensional emotion labels such as Valence
and Arousal are difficult for laymen users to assess and assign,
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and hiring experienced annotators to label a large corpus of
images is prohibitively expensive and time consuming. Since
even experienced annotators may disagree on these labels,
multiple annotations per image are required, which further
increases the cost and complexity of the task. Yet there are
no guarantees that the full range of possible expressions and
intensities will be covered, resulting in imbalanced datasets.
Consequently, large, balanced emotion datasets, with high-
quality annotations, covering a wide range of expression vari-
ations and expression intensities of many different subjects,
are in short supply.

Our approach attempts to address this need. We propose
a fast and cost-effective augmentation framework to create
balanced, annotated image datasets, appropriate for training
Facial Expression Analysis (FEA) systems for dimensional
affect. The framework uses high-quality facial morphings to
transform typical categorical datasets (usually 7 expressions
per subject) into dimensional ones, with an augmentation fac-
tor of at least 20x or more. More importantly, it produces
multiple annotated expressions per subject, balanced across
the Valence-Arousal (VA) space. The resulting synthesized
facial images look realistic and visually convincing. We also
demonstrate that they can be used very effectively for training
and testing real-world FEA systems.

Although morphing, as a means of deriving an extended
set of facial expressions, is a widely used tool in psychol-
ogy [10, 11], it has found limited adoption in the computer
vision community. Traditional work on expression synthe-
sis usually incorporates manipulation of the facial geometry
and texture mapping in images or videos [12, 13]. Other ap-
proaches include the use of 3D meshes adopted from RGB-D
space [14] or the adjustment of Action Units from the Fa-
cial Action Coding System (FACS) [15]. More recently, re-
searchers have employed Generative Adversarial Networks
(GANs) for this purpose [16]. Various conditional GAN vari-
ations have been used to generate novel expressions while
preserving identity and other facial details [17–19]. While
most of them also take the categorical approach, a few models
have been proposed based on action units [20] and continu-
ous emotion dimensions [21]. These GANs generally require



a large dataset to start with, with no guarantees that generated
faces will not exhibit unnatural artifacts, and the difficulty of
creating proper annotations remains. In our approach on the
other hand, we have full control over the pipeline, resulting
in deterministic outputs both in terms of synthetic images and
dimensional emotion labels.

Our main contributions can be summarized as follows:

• A new dataset augmentation framework that can trans-
form a typical categorical facial expression dataset into
a balanced augmented one.

• The framework can generate hundreds of different ex-
pressions per subject with full user control over their
distribution.

• The augmented dataset comes with automatically gen-
erated, highly consistent Valence/Arousal annotations
of continuous dimensional affect.

The code for the proposed augmentation framework is avail-
able at https://github.com/dexterdley/MorphSet.

2. DATASET GENERATION

We assume a 2-dimensional polar affective space, simi-
lar to the Valence-Arousal (VA) space of the circumplex
model [7], with Neutral located at the center. The typical 7
facial expressions, which are usually included in categorical
emotion datasets, Neutral (Ne), Happy (Ha), Surprised (Su),
Afraid (Af), Angry (An), Disgusted (Di) and Sad (Sa), can
be mapped to points with specific coordinates in the polar
AV space. Apart from these 7 points however, there is a lot
of empty space on the remaining AV plane. These missing
facial expressions comprise: (a) different expression varia-
tions e.g. Delighted, Excited, Upset etc., located at different
angles in the AV polar space, and (b) different intensity vari-
ations of the expressions, e.g. slightly happy, moderately
happy, extremely happy etc., spanning the area from the cen-
ter (Neutral) outwards toward the periphery of the AV space.
The basic premise of MorphSet is that many of these expres-
sion variations can be synthesized by high-quality morphings
between images of categorical expressions.

Let FE
i denote the face image of subject i with fa-

cial expression E. For categorical datasets, usually E ∈
{Ne,Ha,Su,Af,An,Di,Sa}. Let θE denote the specific angle
of each expression in the polar AV space, estimated from
emotion studies [7, 23]. Let IEi ∈ [0, 1] denote the inten-
sity of expression E of subject i. Zero expression intensity
IE = 0 coincides with Neutral (by definition INe = 0), while
IE = 1 represents the highest possible intensity.

Let Mp

(
Fsource

i ,Ftarget
i , r

)
be a morphing function,

based on p facial landmarks, that returns a new face image,
which is the result of morphing Fsource

i towards Ftarget
i with

a ratio r ∈ [0, 1]; when r = 0 the morphed image is identical

to Fsource
i , and when r = 1 it is identical to Ftarget

i . Any
contemporary morphing approach can be used for this, such
as Delaunay triangulation followed by local warping of 68
facial landmarks from Dlib [24] face recognition system.

Our augmentation framework is based on 2 types of mor-
phings. In order to synthesize new expression variations,
Apex to Apex morphing (1) is used, between the given apex
expressions of the categorical dataset:

Apex to Apex


FA1rA2

i =Mp

(
FA1

i ,FA2
i , r

)
IA1rA2
i = (1− r)IA1

i + rIA2
i

θA1rA2 = (1− r)θA1 + rθA2

(1)

where A, A1 and A2 are apex expressions from the parent
dataset. In order to synthesize new intensity variations, Neu-
tral to Apex morphing (2) is used, between the NE image and
a given (or interpolated) apex image:

Neutral to Apex


FrA

i =Mp

(
FNe

i ,F
A
i , r
)

IrAi = rIAi
θrA = θA

(2)

Fig. 1 shows an example of these 2 types of morphing.
Once new interpolated apex expressions are generated by
equation (1), ‘neutral to interpolated apex’ morphings can
further be generated by applying equation (2) on them.

For every given or generated face image FE
i , with IEi and

θE , the Valence and Arousal annotations can be computed as
V E
i = IEi cos(θE) and AE

i = IEi sin(θE).
Fig. 2 illustrates the proposed augmentation framework

for a typical categorical dataset with the 7 prototypical ex-
pressions. We start from 10◦, the approximate location of
Happy in VA space, and proceed in increments of 15◦ steps
in order to span the whole range up to 205◦, where Sad is
approximately located. The proposed template is bounded
within [10◦, 205◦] only because negative Arousal expressions
(Sleepy, Tired, Bored, Calm, etc.) are absent from the typical
categorical emotion datasets. We use an angle increment of
15◦ and an intensity increment of 0.1, because they strike a
good balance between expression granularity, augmentation
factor and symmetry between the positions of the given pro-
totypical expressions in the AV space.

Based on the above selected granularity, for a typical
categorical dataset of 7 facial images per subject, the pro-
posed augmentation framework can generate 134 new im-
ages, reaching a total of 134+7=141 facial images per sub-
ject. This translates to an augmentation factor of 20x, or
40x with simple image mirroring. Doubling the angular and
radial granularity to 7.5◦ and 0.05, respectively, results in an
augmentation factor of 80x, or 160x with image mirroring.

We build an example augmented dimensional dataset
from a combination of 3 categorical datasets, which have
been extensively used in psychology: the Radboud [22],
Karolinska [25], and Warsaw [26] datasets. We select them

https://github.com/dexterdley/MorphSet
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Fig. 1. Examples of the 2 types of face morphings utilized in the proposed augmentation framework, using images from the
Radboud dataset [22]. In this example, all images are synthesized out of 4 given images from the original dataset (outlined in
black). Top: Neutral to Apex (Happy) morphing. Bottom: Apex1 (Sad) to Apex2 (Disgusted) morphing.
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Fig. 2. Dataset augmentation framework based on face mor-
phing. Intensity of expression is represented with size and
color saturation. Outlined shapes indicate apex expressions.

because they have superior image quality, their facial expres-
sions were guided by FACS experts, and they are accompa-
nied by validation studies that provide the perceived intensity
of expression IEi .

Using the proposed MorphSet augmentation framework,
all faces are aligned with respect to the subjects’ eyes, and
synthetic images are generated for each subject. The result-
ing augmented dataset comprises more than 55,000 images,
which – with finer granularity and mirroring – can reach
over 450,000. More importantly though, each image comes

with continuous Valence, Arousal, and Intensity annotations,
which can be used to train dimensional FEA systems.

As the proposed augmented dataset contains only frontal
images, an FEA system trained on it would not be invariant
to different head poses. There are various solutions to this,
which are discussed in detail in [27]. In fact, we have suc-
cessfully used such an approach to build a robust in-the-wild
facial expression analysis system [28].

3. COMPARISON & DISCUSSION

In this section, we evaluate the benefits of MorphSet as a
dataset for facial emotion recognition. We also describe the
AffectNet [8] and Aff-Wild [9] databases commonly used for
emotion recognition.

AffectNet [8] is a dataset comprising of roughly 450,000
images of in-the-wild-facial expressions collected from the
Internet using affect keywords. These images are manually
annotated with both categorical and dimensional labels. De-
spite its size, the training samples of AffectNet are noisy and
highly imbalanced, causing many learning algorithms to per-
form poorly on the minority classes. Furthermore, human an-
notator agreement is just over 60%, suggesting that the dataset
suffers from noisy/incorrect annotations.

Aff-Wild [9] is an in-the-wild video dataset, consisting of
298 Youtube videos displaying reactions of 200 subjects. The
annotations for valence and arousal were collected continu-
ously via joystick. For direct comparison with AffectNet and
MorphSet, we extract individual frames according to the af-
fect annotations from the time-stamped video sequences.

Table 1 compares these two databases with MorphSet,
which is unique in that it provides a balanced distribution of
facial expressions for each subject.

To compare baseline FEA results, we train a ResNet-18
model [29] on each dataset. We add two neurons after the



Fig. 3. Randomly sampled training images around the same valence and arousal annotations from AffectNet, Aff-Wild, and
MorphSet (top to bottom rows). Circles indicate wrong Arousal/Valence annotations (e.g. positive instead of negative), while
squares indicate correct overall emotion but wrong intensity (e.g. extremely afraid instead of slightly afraid).

Table 1. Comparison to other dimensional datasets.
AffectNet Aff-Wild MorphSet

Unique subjects ≈450,000 200 167
Expressions
per subject

1
N/A

(video)
≈342

Total
images

≈450,000 1,224,100
55,000 up to
≈450,000

Annotators 12 8 N/A

final fully connected layer to predict valence and arousal di-
mensions and minimize the L2 loss. Input images are resized
to 224x224 with standard augmentations (e.g. affine transfor-
mations). We evaluate on the validation set of AffectNet and
on 20% of randomly selected, unseen identities of Aff-Wild
and MorphSet.

Table 2 shows the Root Mean Square error (RMSE) and
Concordance Correlation Coefficient (CCC) for each dataset.
Although the results are not directly comparable because of
the difference in test sets, they provide useful insights. The
performance for MorphSet is significantly better than Affect-
Net and Aff-Wild, likely due to the frontal and highly con-
trolled conditions of the images as well as higher consistency
of the VA annotations.

The fact that wild datasets are often noisier and less con-
trolled in terms of facial expressions than MorphSet is further

illustrated by Fig. 3, where images with specific VA labels are
randomly sampled from each of the three datasets. AffectNet
and Aff-Wild samples show significant fluctuations and out-
liers in facial expressions (indicated with circles and squares
in Fig. 3), whereas the facial expressions from MorphSet are
much more consistent across different subjects.

Table 2. ResNet-18 baseline results for each dataset.
AffectNet Aff-Wild MorphSet

RMSE Valence 0.427 0.407 0.157
RMSE Arousal 0.390 0.266 0.155

CCC Valence 0.533 0.186 0.915
CCC Arousal 0.418 0.174 0.821

4. CONCLUSIONS

We presented MorphSet, a dataset augmentation framework
that can transform a typical categorical dataset of facial ex-
pressions into a balanced augmented one using image morph-
ing. We use the framework to generate hundreds of different
expressions per subject with full user control over their dis-
tribution. The augmented dataset comes with automatically
generated, highly consistent dimensional annotations suitable
for supervised learning of continuous affect.
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