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ABSTRACT

We introduce BAFT, a fast binary and quasi affine invariant
local image feature. It combines the affine invariance of Har-
ris Affine feature descriptors with the speed of binary de-
scriptors such as BRISK and ORB. BAFT derives its speed
and precision from sampling local image patches in a pattern
that depends on the second moment matrix of the same im-
age patch. This approach results in a fast but discriminative
descriptor, especially for image pairs with large perspective
changes.

Our evaluation on 40 different image pairs shows that
BAFT increases the area under the precision/recall curve
(AUC) compared to traditional descriptors for the majority
of image pairs. In addition we show that this improvement
comes with a very low performance penalty compared to the
similar ORB descriptor. The BAFT source code is available
for download.

1. INTRODUCTION

The usefulness of local image features has been demonstrated
by their diverse application in various computer vision do-
mains ranging from object recognition [1] over scene align-
ment [2] to 3D structure from motion [3]. The features derive
their usefulness through a balance of discriminative descrip-
tion of local image regions coupled with partial invariance to
affine and photometric image transformations [4].

For applications that require real-time matching or run on
mobile devices with limited resources, the computational effi-
ciency of finding local keypoints and computing correspond-
ing descriptors is crucial [5]. However, many existing fast
descriptors trade off invariance with speed. We therefore pro-
pose the Binary Affine Feature Transform (BAFT), a fast bi-
nary descriptor robust to perspective changes like affine trans-
formations.

In the design of BAFT we were inspired by earlier local
image features. The closest kin of BAFT is the ORB key-
point detector and descriptor [6]. ORB introduced a simple
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but fast scale- and rotation-invariant local feature by combin-
ing the FAST keypoint detector [7] with the binary descrip-
tor of BRIEF [8]. To obtain rotation- and scale-invariance,
ORB applies the FAST keypoint detector to an image pyra-
mid and estimates the orientation using intensity centroids af-
ter ranking and filtering the keypoints by the Harris Corner
Measure [9], which we describe later in Section 2. The key
to ORB’s speed however is the simplistic descriptor sampling
taken from BRIEF.

Another influence on BAFT are the Harris Affine and
Hessian Affine detectors [10], which build on the theoretical
foundations for affine invariant descriptors [11, 12]. The Har-
ris Affine detector provides affine invariance by normalising
the image region around each keypoint with respect to its
second moment matrix in an iterative process, which we also
describe in Section 2.

BAFT combines the two approaches by adapting the sam-
pling of the binary descriptor to the normalisation matrix
computed from the second moment matrix. Instead of itera-
tively refining this matrix, we compute it once and normalise
the sampling pattern of points accordingly. The speed of
BAFT is partially derived from the fact that the second mo-
ment matrix is already computed in order to weight the FAST
keypoints, and as such little extra computation is necessary to
create a skew- and stretch-invariant binary feature descriptor.

A few other works deserve mention before we meet them
again in later comparisons. Lowe’s SIFT descriptor uses a
Difference-of-Gaussians on an image pyramid to find key-
points and a gradient histogram of the surrounding region to
describe them. AKAZE [13] is an example of a binary de-
scriptor showing impressive performance by using a non lin-
ear scale space for keypoint detection and description. Fi-
nally, ASIFT [14] is a hybrid of a feature descriptor and a
matching algorithm. The image pairs are transformed to cover
a set of affine transformations and for each transformation
a set of SIFT descriptors is calculated and matched using
RANSAC [15] to weed out false correspondences. While
ASIFT is not a traditional feature descriptor, it is an interest-
ing approach to matching images with large affine variations.
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2. AFFINE INVARIANT FEATURE

Like ORB, BAFT1 detects features using the FAST keypoint
detector on an image pyramid. For each FAST keypoint we
compute the second moment matrix M of a local image re-
gion defined as follows:

M(xr) =
∑
p,q

w(p, q)

[
I2x(xr) IxIy(xr)
IxIy(xr) I2y (xr)

]
. (1)

Here w(p, q) is the weight of the pixel position (p, q) in the
image region xr. Ix and Iy are the image derivatives in x and
y directions. The weighting function w(p, q) is often Gaus-
sian, but for BAFT we use a uniform weight over a square
region. The eigenvalues of M are a good indicator of the
‘cornerness’ of the image patch. M will have two large posi-
tive eigenvalues when the gradients I2x and I2y are both large,
which is typically the case for a corner. Harris and Stephens
[9] suggest using mc = det(M) − α trace2(M) as a mea-
sure for evaluating the ‘cornerness’ of a keypoint. Using this
measure we order the keypoints returned by FAST and pick
out the N best. We calculate the second moment matrix us-
ing a square region of 12× 12 pixels, but use only the central
2×2 pixel region for the purpose of evaluating the cornerness.
The second moment matrix computed from the larger region
is then stored in memory with the keypoint to use when we
build the descriptor.

We build the descriptor by sampling the image around
each keypoint based on a set of points P relative to the key-
point position. For our purposes P can be seen as a 2×k
matrix, where k is the number of points we are sampling. If
two image regions Rl and Rr are related by an affine transfor-
mation then there exists a matrix A such that Rr sampled by
P′ = AP is equal to Rl sampled by P. We can decompose
the affine transformation into a skew matrix S and a rotation
matrix R: A = SRS−1; as suggested by Lindeberg [11], we
compute the skew matrix as the square root of the second mo-
ment matrix S = M

1
2 . For the rotation matrix we use the

normalised eigenvector vλ = (v0 v1)
T corresponding to the

largest eigenvalue as the direction of our feature point and let
R =

(−v1 v0
v0 v1

)
. To normalize the sample points based on an

image region we use Pnorm = sRM
1
2P to sample the region

where s is the scale of region. This process is illustrated in
Figure 1.

Because of our choice of rotation matrix, BAFT is not
fully rotation-invariant. Two examples illustrate this fact: For
the first example consider an image patch with a uniform gra-
dient of v = [q − p]. This patch would have a second mo-
ment matrix of M = α

( q2 −qp
−qp (−p)2

)
where α is a constant.

This matrix would be identical to that of an image patch with
the inverse gradient of v = [−q p]. As a result, BAFT is

1 The C++ source code for BAFT is available for download at
https://github.com/arnfred/BAFT.

1. Original Points 2. Scale by Keypoint 3. Squeeze by eigenvalues 4. Rotate by eigenvector

Fig. 1: Affine adjusted sampling of the descriptor. For
each keypoint we sample the surrounding image based on
the eigenvectors and values of the Harris response. 1. The
original distribution of points. 2. Points scaled according to
keypoint scale information. 3. Points squeezed based on the
eigenvalues of the Harris response. 4. Points aligned with
the eigenvector of the Harris response corresponding to the
largest eigenvalue.

ill suited to handle large rotations; for smaller rotations, us-
ing the eigenvector adds stability. For the second example
consider an image patch with the two dominant gradients of
v1 = [q −p] and v2 = [q p]. The somewhat simplistic second
moment matrix constituted of only those two gradients can be
calculated as M = α

( 4q2 0

0 4p2

)
. M yields a stable eigen-

vector with a direction between the two gradients, instead of
deciding which gradient is dominant.

Given the sampled image values we use the output of
winner-take-all hashing (WTA) as our descriptor. We group
the samples in sets of four and find the highest and lowest val-
ues for each group. The resulting hash is made by concatenat-
ing the binary representation of the index of the highest and
lowest values of a given set. Depending on how many points
we sample, we can create descriptors of different length. The
16 byte version of BAFT is made from sampling 128 points
in 32 groups with four sampling points each (each group con-
tributes 2×2 bits). Similarly the 32 byte version samples 256
points in 64 groups, etc.

3. EXPERIMENTAL RESULTS

We evaluate all descriptors on the ASIFT dataset [14], which
focuses on the challenge of perspective change and contains
five sets of 10 images. We use the standard implementa-
tion of the OpenCV library version 3.0.0 for SIFT, ORB, and
AKAZE. For Harris Affine and Hessian Affine we make use
of the implementation provided by Mikolajczyk et al. [16].2

For ASIFT we use the implementation by Morel et al. [14].3

3.1. Evaluating Correspondences

We compare descriptors by matching a set of image pairs us-
ing nearest neighbor ratio match. Each descriptor is matched
with its nearest neighbor and ranked by the ratio r between the
best and second best match. The ratio serves as an imperfect

2http://www.robots.ox.ac.uk/∼vgg/research/affine/descriptors.html
3http://www.ipol.im/pub/art/2011/my-asift/
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measure of how likely a given match is correct. For applica-
tions where high accuracy is needed we can select a subset of
matches for which the ratio is less than a given threshold τ .

We calculate recall and precision for the subset of matches
with r ≤ τ . The area under the curve (AUC) over τ for a
set of matches can be calculated as the integral over the re-
call/precision curve. In practice we estimate this number us-
ing Monte Carlo integration.

All transformations in the two datasets are planar. The
points in each image pair (I1, I2) are related by a homography
H. We calculate the projection error as:

eP = |Hp1 − p2|+
∣∣H−1p2 − p1

∣∣ . (2)

A match between two points (p1,p2) is deemed as a correct
correspondence if the projection error is less than emax; for
our experiments we use emax = 5. For an image pair (I1, I2),
we find the positions of all keypoints (P1,P2) and calculate
the total number of possible correspondences by counting all
the pairs of keypoints for which eP ≤ emax.

3.2. Speed
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Fig. 2: Comparison of feature computation and matching
speed for different descriptors.

Figure 2 compares BAFT with SIFT, ORB, AKAZE in
terms of speed. For each descriptor we evaluate how long it
takes to compute and match a thousand features. All measure-
ments are done on a Intel Core2 Duo CPU @ 2.26GHz. The
results demonstrate that we do not need to compromise on
performance to obtain high robustness to perspective change.
To find and compute descriptors for a thousand feature points,
the 16-byte version of BAFT achieves speeds within 5 percent
of ORB, partly due to the higher speeds of matching a 16-byte
descriptor. The 32-byte version of BAFT is only 27% slower

than ORB, which features the same descriptor length. Even
the longest (128-byte) version of BAFT is less than 100 mil-
liseconds slower than ORB. BAFT-128 is four times as fast as
AKAZE and six times faster than SIFT for the task of comput-
ing descriptors. The other descriptors (ASIFT, Harris-Affine,
Hessian-Affine) are much (1-2 orders of magnitude) slower
than BAFT and thus not shown in this plot.

3.3. Accuracy

Figure 3 shows precision/recall curves for a selection of im-
age pairs (cf. Figure 4) from the ASIFT Dataset. Except for
Abs x4-7, even the 16 byte version of BAFT has higher pre-
cision than SIFT.
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Fig. 3: BAFT compared with other feature descriptors on im-
age pairs from the ASIFT dataset.

The complete AUC results for all image pairs are pre-
sented in Table 1. Cumulatively over all images in the ASIFT
dataset, BAFT-16 outperforms the only faster tested descrip-
tor ORB by more than 40%. BAFT-32 is superior to its clos-
est contenders SIFT and AKAZE; BAFT-128 achieves about
80% higher AUC than SIFT.

Invariance invariably incurs a penalty for cases with little
or no variation along the vector of invariability. A scale in-
variant detector for example is at a disadvantage when match-
ing image pairs with no scale change. BAFT makes a trade-
off between a higher degree of skew invariance and a lower



Fig. 4: The image pairs used in Figure 3. From left to right
the image sets with particular images noted in parenthesis are
‘abs x1’ (1-7), ‘abs x4’ (1-7), ‘abs x10’ (1-5), ‘trans t2’ (1-
4), ‘trans t4’ (1-2).

invariance to rotation in order to offset this penalty to some
degree.

Figure 5 quantifies the rotation invariance of BAFT with
respect to SIFT, ORB, and AKAZE. For each descriptor we
compute the matching score for all images when matching
with the same image rotated by a given angle (from −180
to +180 degrees). The results shown are averaged over all
images as well as positive and negative angles. While BAFT
cannot compete with SIFT or AKAZE for larger rotations,
all but the 16-byte versions of BAFT fare similar to ORB up
to about 90 degrees of rotation; for rotations of less than 45
degrees, they even approach SIFT and AKAZE.
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Fig. 5: Quantifying rotation invariance for different descrip-
tors, when matching an image with a copy of itself rotated by
a given angle.
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1—2 0.320 0.364 0.056 0.479 0.335 0.275 0.315 0.320 0.332
1—3 0.174 0.279 0.051 0.424 0.249 0.264 0.301 0.317 0.332
1—4 0.232 0.213 0.032 0.278 0.204 0.177 0.211 0.216 0.229
1—5 0.135 0.159 0.015 0.251 0.109 0.123 0.156 0.161 0.172
1—6 0.120 0.061 0.004 0.075 0.043 0.061 0.088 0.094 0.102
1—7 0.094 0.030 0.001 0.091 0.029 0.067 0.120 0.134 0.137
1—8 0.011 0.000 0.000 0.005 0.002 0.011 0.017 0.016 0.019
1—9 0.013 0.005 0.000 0.009 0.001 0.015 0.052 0.056 0.070

A
B

S
X

4

1—2 0.686 0.703 0.876 0.646 0.729 0.587 0.656 0.675 0.697
1—3 0.710 0.641 0.877 0.607 0.717 0.571 0.615 0.640 0.657
1—4 0.646 0.394 0.652 0.438 0.506 0.385 0.436 0.452 0.461
1—5 0.461 0.282 0.479 0.354 0.403 0.290 0.356 0.374 0.397
1—6 0.214 0.082 0.134 0.122 0.154 0.080 0.096 0.103 0.109
1—7 0.018 0.002 0.009 0.011 0.008 0.008 0.009 0.014 0.014
1—8 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
1—9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A
B

S
X

10

1—2 0.245 0.377 0.051 0.439 0.231 0.344 0.403 0.426 0.448
1—3 0.155 0.316 0.047 0.337 0.182 0.258 0.337 0.360 0.387
1—4 0.059 0.040 0.000 0.082 0.038 0.057 0.086 0.093 0.109
1—5 0.026 0.017 0.002 0.043 0.012 0.049 0.082 0.086 0.098
1—6 0.000 0.000 0.000 0.000 0.001 0.004 0.011 0.009 0.013
1—7 0.002 0.001 0.000 0.016 0.001 0.020 0.022 0.029 0.045
1—8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
1—9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T
R

A
N

S
T

2
1—2 0.517 0.526 0.620 0.526 0.600 0.353 0.445 0.483 0.510
1—3 0.229 0.106 0.144 0.215 0.226 0.172 0.235 0.271 0.305
1—4 0.065 0.007 0.015 0.043 0.028 0.062 0.094 0.135 0.146
1—5 0.003 0.001 0.003 0.012 0.007 0.008 0.025 0.033 0.036
1—6 0.001 0.000 0.000 0.001 0.000 0.007 0.011 0.016 0.016
1—7 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.005 0.007
1—8 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.006 0.005
1—9 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.003

T
R

A
N

S
T

4

1—2 0.077 0.051 0.012 0.092 0.047 0.108 0.164 0.182 0.205
1—3 0.002 0.002 0.002 0.009 0.002 0.013 0.021 0.026 0.030
1—4 0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.003 0.004
1—5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002
1—6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1—7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1—8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1—9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

All All 0.403 0.266 0.190 0.427 0.288 0.374 0.530 0.641 0.746

Table 1: AUC for image sets from the ASIFT dataset.

4. CONCLUSIONS

We presented BAFT, a local image feature descriptor using
the second moment matrix of an image patch to adapt the
sampling pattern and produce a skew- and stretch-affine de-
scriptor constructed with a winner-take-all hashing strategy.
We showed that BAFT can be computed efficiently, similar in
speed to ORB, and several times faster than AKAZE or SIFT.

We compared BAFT with five other descriptors over 40
image pairs from the ASIFT dataset, which features large per-
spective changes. The results show that BAFT is on aver-
age twice as performant as ORB in terms of AUC for images,
and remains superior to more invariant feature descriptors like
SIFT and AKAZE. Based on these results we conclude that
BAFT is a useful novel image feature that achieves robust-
ness to perspective change without sacrificing speed.
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