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ABSTRACT

This paper presents a method for dataset manipulation based
on Mixed Integer Linear Programming (MILP). The proposed
optimization can narrow down a dataset to a particular size,
while enforcing specific distributions across different dimen-
sions. It essentially leverages the redundancies of an initial
dataset in order to generate more compact versions of it, with
a specific target distribution across each dimension. If the
desired target distribution is uniform, then the effect is bal-
ancing: all values across all different dimensions are equally
represented. Other types of target distributions can also be
specified, depending on the nature of the problem. The pro-
posed approach may be used in machine learning, for shaping
training and testing datasets, or in crowdsourcing, for prepar-
ing datasets of a manageable size.

Index Terms— Mixed Integer Linear Programming
(MILP), datasets, balancing, crowdsourcing.

1. INTRODUCTION

Data is abundant in our time. The widespread use of cam-
eras, microphones, and other sensors in our everyday lives
has made it easier than ever to collect all types of data. This
has contributed significantly to advancement in many sci-
entific domains, including especially image processing and
computer vision. It is not an exaggeration to claim that nowa-
days, there is at least one dataset for (almost) every research
problem.

Advances in big data analytics have contributed to the no-
tion that ‘bigger is better’. However, little attention is usually
given to feature distributions in the dataset. Consequently,
some datasets may be significantly skewed towards specific
attributes. For example, a dataset for gender estimation with
the majority of its images depicting people of a specific age
group is non-representative of real life, and may not be ap-
propriate for use as a training set. Moreover, the skewness
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may affect more than one dimension of interest, which limits
re-usability of a model learned from a particular dataset.

Depending on the objective, different approaches may be
used in order to deal with imbalanced datasets. Undersam-
pling (reducing the over-represented classes) and oversam-
pling (replicating the under-represented classes) are two typi-
cal approaches [1]. Assigning different importance weights to
data points is also another technique that may result in more
‘balanced’ classifiers. For a more comprehensive review of
existing balancing techniques please refer to [2].

Although existing techniques may alleviate imbalanced
feature distributions, they do not explicitly provide a solu-
tion for narrowing down the size of a dataset while simulta-
neously enforcing specific target distributions (not necessarily
uniform) for different features. Synthesizing a smaller subset
via subsampling with a particular distribution for different di-
mensions is a challenging combinatorial problem that is of
interest in many different areas.

In machine learning, creating datasets with different fea-
ture distributions can provide insights regarding the generaliz-
ability of a learning algorithm. Crowdsourcing, where smaller
chunks of a larger dataset are annotated by workers, is another
field where a subsampling technique could be of potential
use. Apart from plain annotations, crowdsourcing is also used
in an exploratory way for discovering user preferences and
behaviors. For example, large scale crowdsourcing studies
have analyzed how image attributes impact memorability [3],
image appeal [4, 5], and visual summarization [6]. In these
studies no particular attention is given to the distributions of
each image attribute in the crowdsourced dataset. The danger
here is that the values of some attributes may be over/under-
represented in the dataset, contributing to skewed results re-
garding the workers’ preferences and behaviors. Moreover,
the crowdsourcing scenario necessitates narrowing down to
a manageable size the number of items the workers have to
interact with, especially in exploratory studies. This is due
to the fact that large sets are difficult to process, and workers
may not pay equal attention to all items.

To this end, a new dataset shaping technique is intro-
duced, based on Mixed Integer Linear Programming (MILP).



The proposed optimization can narrow down a dataset to a
particular given size, while enforcing specific distributions
across different dimensions. It essentially leverages the re-
dundancies of an initial dataset, in order to generate more
compact versions of it, with a specific target distribution
across each dimension. If the target distribution is uniform,
then the effect is balancing: all values across all different
dimensions are equally represented. Other types of target
distributions can also be used, depending on the nature of the
problem.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed approach based on MILP optimization.
Section 3 demonstrates the results of the proposed aproach
in two publicly available datasets. Concluding remarks are
given in Section 4.

2. OPTIMIZATION FOR DATASET CREATION

Let S =
{

qi | qi ∈ RM,qi ∼ DM
S

}K
i=1 be an initial set of obser-

vations of a random variable, forming the data matrix Q =
[qi j]K×M . Assuming there is sufficient redundancy across all
M dimensions, the objective is to select a subset of observa-
tions s ⊂ S with s =

{
q̂i | q̂i ∈ S, q̂i ∼ DM

s
}N

i=1, N � K, and
Q̂ = [q̂i j]N×M denoting the reduced data matrix. Enforcing
DM

s =U ensures that s will have a uniform distribution, result-
ing in a balancing effect. However, other target distributions
may be preferred, depending on the problem.

Let matrix D ∈ RH×M represent the target distribution
DM

s , such that each of its columns D∗ j contains the Proba-
bility Mass Function (PMF) of DM

s across the jth dimension,
quantized into H intervals (bins). Let B = {Bm}M

m=1 denote
a set of M binary matrices, with Bm ∈ ZH×K

2 , such that each
binary element bm

i j denotes whether or not the jth item of S
belongs to the ith interval of the target PMF for dimension
m. Finally, we introduce a binary vector x ∈ ZK

2 , whose coef-
ficients xi are decision variables determining whether or not
the ith item of S belongs to the subset s. The problem then
can be formulated as the following minimization:

min
x

M

∑
m=1
‖Bmx−ND∗m‖1 s.t.‖x‖1 = N, (1)

which essentially means, “select those N elements from S that
minimize the L1 distance from the target PMF and thus ap-
proximate DM

s ”. The above minimization can be solved by
using a set of auxiliary vectors Z = {zi}M

i=1 with zi ∈ RH
+, in

order to handle the absolute values of the L1 norm:

Bmx−ND∗m ≤ zm

Bmx−ND∗m ≥−zm

}
⇒

Bmx− zm ≤ ND∗m
−Bmx− zm ≤−ND∗m

}
(2)

for each dimension m and minimizing over Z. The final opti-
mization can be expressed as MILP as follows:

Minimize cTx̃ s.t. Ax̃≤ b, (3)

with c =
[
0TK 1THM

]T, x̃ =
[
xT zT1 · · ·zTM

]T and

A =



1TK 0THM

−1T
K 0THM

B1

...
BM

−IHM

−B1

...
−BM

−IHM


,b =



N

−N

ND∗1
...

ND∗M
−ND∗1

...
−ND∗M


A ∈ Z(2+2HM)×(K+HM), b ∈ R(2+2HM) and c ∈ ZK+HM

2 , while
x̃ is also of size K +HM and contains both the integer and
real optimization variables. The first two rows of A and b ad-
dress the equality constraint of the integer variables ‖x‖1 =
N expressed as two inequality constraints ∑

K
i=1 xi ≤ N and

−∑
K
i=1 xi ≤ −N. The lower two sections address the con-

straints for the real auxiliary variables, derived from the upper
and lower parts of Eq. (2).

MILP problems are NP-hard combinatorial problems.
However, modern branch-and-bound algorithms can solve
many real world problems reliably and fast [8]. Such algo-
rithms solve the LP relaxation problem to obtain fractional
solutions and create two sub-branches by adding new con-
straints [9]. As an indication, our implementation1 uses MAT-
LAB’s intlinprog function and is able to solve the problem of
Eq. (3) for a dataset of K = 220,000 observations, M = 30
dimensions, H = 100 quantization bins, and N = 10000 se-
lections, in approximately 85 seconds on a typical PC with
16GB of memory. Smaller datasets, similar to the ones in
Section 3, require less than a second. This demonstrates that
the proposed approach can be easily used at least in small or
medium sized datasets.

3. EXPERIMENTAL RESULTS

In order to demonstrate the utility of the proposed approach,
we apply it to two different image datasets: the Gallagher
dataset [7], which contains family photos, and the Helen
dataset [10], which comprises images of faces used for facial
landmark recognition and tracking. In both cases, we create
subsets of the original datasets with different distributions
across different dimensions using the above technique.

3.1. Gallagher Dataset

The Gallagher dataset [7] comprises 589 photos depicting
family moments, and is a typical example of a personal photo
collection. These images have many different characteristics,

1 Our Matlab code is freely available at https://sites.google.com/
site/vonikakis/software-code/dataset_shaping

https://sites.google.com/site/vonikakis/software-code/dataset_shaping
https://sites.google.com/site/vonikakis/software-code/dataset_shaping
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Fig. 1. Different ways of selecting 90 out of the same 589 photos from the Gallagher dataset [7], according to different target
distributions. Top row: original distributions of the dataset. Second row: enforcing a uniform distribution. Third row: enforcing
a triangular distribution. Bottom row: enforcing a linearly-descending distribution.

and are captured under a diverse set of conditions. We analyze
the images according to 6 different attributes/dimensions.

1. Capture Time: We extract the EXIF timestamps from
the captured photos.

2. Scene Type: Indoors/outdoors. We employ the Rel-
ative Attributes approach proposed in [11], using
gist features and color histograms, and train the sys-
tem to compute a real-valued rank specifying the
indoor/outdoor-ness for each image.

3. Image Sharpness: Overall perceived sharpness of an
image, computed similar to [12].

4. Image Exposure: Overall exposure of an image, com-
puted by the mean value of the luminance component.

5. Image Contrast: Overall contrast of an image, com-
puted by the variation coefficient (relative standard de-
viation) of the luminance component.

6. Image Colorfulness: Perceived vividness of colors of
an image, as computed in [13].

All the above attributes are normalized to the interval [0,1] us-
ing min-max normalization and then quantized into 9 discrete
levels (H = 9). In some cases where the original distribution
was severely skewed, a simple non-linear mapping (e.g. log-
arithmic) was applied to the data before quantization.

Fig. 1 depicts the initial distributions, as well as the re-
sults of the proposed method for selecting 90 out of the 589
images, using 3 different target distributions: uniform, trian-
gular, and linearly-descending. One immediate observation is
that the original dataset distributions (blue) are far from uni-
form and follow different shapes for all 6 dimensions. For
all subsets created by our method however, it is evident that
the resulting distributions across all 6 dimensions closely re-
semble the target. Naturally, the match is not perfect, because
the assumption of ‘sufficient variation across all dimensions’
for the given original dataset (Gallagher) is not met. In other
words, the original dataset is not redundant enough in order
to include all possible combinations of values across the di-
mensions of interest. For example, this is the case for the
‘indoors/outdoors’ attribute, where the initial distribution is
heavily skewed. It should be noted that the degree of skew-
ness of the data is not necessarily a problem by itself for the
proposed method. It may become a problem however, when
the requested number of selected items N becomes compara-
ble to the total number of available items K.

3.2. Helen Dataset

The Helen dataset [10] comprises 2330 images of faces in var-
ious head poses and expressions, and is mainly used for train-
ing algorithms for the detection of facial registration points.
An important aspect of a successful facial point detector algo-
rithm is to detect the correct location of facial points even in
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Fig. 2. Selecting 14 images from the Helen dataset [10] in a balanced way. Images are arranged according to Yaw (top row),
Pitch (middle row), and Roll (bottom row).

extreme non-frontal head poses. To this end, the initial distri-
bution of head poses in the training dataset is very important;
a dataset with considerably more frontal faces will be skewed
and will not have sufficient training examples for other head
poses. As such, algorithms trained on such datasets may ex-
hibit good performance for frontal faces but may suffer for
other head poses.
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Fig. 3. Distributions of the original Helen dataset (total 2330
images) across the three head-pose dimensions.

Table 1. MSE between a perfectly uniform distribution and
the one generated by the proposed approach, for different
dataset sizes (as percentage of the complete Helen dataset).

Dataset Size Yaw Pitch Roll Mean
100% (original) 0.048 0.078 0.198 0.108

75% 0.022 0.07 0.155 0.082
50% 0.001 0.039 0.116 0.052
25% 0 0.018 0.069 0.029
5% 0 0 0.041 0.014
1% 0 0 0 0

In this context, we analyze the Helen dataset in terms of
three attributes/dimensions which characterize the orientation
of the head: yaw, pitch and roll. All three attributes were es-
timated by the Intraface library [14], truncated to the interval
[−30,30] and quantized into H = 7 bins. Fig. 3 depicts the
distribution of the whole dataset for the three head pose di-
mensions. It is clear that the dataset is not well balanced and
strongly skewed towards frontal faces.

We apply the proposed approach, enforcing a uniform dis-
tribution for different resulting sizes of datasets (varying N).
Table 1 shows the Mean Square Error (MSE) between a per-
fectly uniform distribution and the one generated by the pro-
posed approach. Dataset sizes are expressed as a percentage
of the original Helen dataset. It is evident that as the number
of target images decreases, the resulting distribution increas-
ingly resembles a uniform distribution. Given the greater re-
dundancy for non-frontal yaw instances in the dataset, con-
vergence of the distribution to the target (uniform) happens
earlier for yaw than pitch and roll.

To further demonstrate the balancing effect of the pro-
posed algorithm in a qualitative manner, 14 images were se-
lected from the Helen dataset so as to achieve a balanced dis-
tribution for the three head pose dimensions using the pro-
posed algorithm. Fig. 2 depicts these images arranged in the
specified order for roll, pitch, and yaw. It is evident that within
the 14 selected images, different values corresponding to the
target attribute/dimension are equally represented.

4. CONCLUSIONS

This paper introduces a methodology for dataset subsampling
and shaping based on Mixed Integer Linear Programming
(MILP). The proposed approach can narrow down a dataset
to a particular size, while enforcing specific target distri-
butions across different dimensions. Experimental results
demonstrated the ability of the algorithm to undersample
datasets and successfully enforce various target distributions
across different dimensions and quantization ranges.

As a straightforward application, our algorithm can be
used for balancing originally imbalanced datasets (enforcing
a uniform distribution). Possible uses include machine learn-
ing and user studies involving crowdsourcing, where smaller
balanced datasets can be created, to eliminate the effect of
data biases on user behavior. Our technique can limit the cost
of such studies (smaller number of items to interact with) and
indirectly increases the quality of the acquired results (due to
lower fragmentation of workers’ attention).
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