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ABSTRACT

Sky/cloud images captured by ground-based Whole Sky Im-
agers (WSIs) are extensively used now-a-days for various ap-
plications. In this paper, we learn the semantics of sky/cloud
images, which allows an automatic annotation of pixels with
different class labels. We model the various labels/classes
with a continuous-valued multi-variate distribution. Using a
set of training images, the distributions for different labels are
learnt, and subsequently used for labeling test images. We
also present a method to determine the number of clusters.
Our proposed approach is the first for multi-class sky-cloud
image annotation and achieves very good results.

Index Terms— Clustering, likelihood estimation, ground-
based sky imaging

1. INTRODUCTION

The study of clouds and analysis of their features are impor-
tant in several applications such as climate modeling, weather
prediction, solar energy generation, or air-to-ground commu-
nications [1, 2]. Nowadays, cloud analysis is extensively per-
formed using images obtained from ground-based sky cam-
eras [3]. These are able to provide sky/cloud images with
high spatial and temporal resolution.

Semantic segmentation is an important part of the analy-
sis of sky/cloud images. It is challenging because clouds do
not possess any definite structure, shape, size or color. Tra-
ditionally, images are manually annotated with different la-
bels. However, manual annotation is cumbersome and impre-
cise, which is why automatic semantic labeling approaches
are needed.

In this paper, we propose a probabilistic framework for
annotating image regions as thin clouds, thick clouds, or clear
sky. Using a set of training images with manual labels, we
compute the joint probability distribution of the different class
labels. We assume that the images can be segmented into
non-overlapping regions, and different pixels belonging to the
same class can be clustered together. Moreover, in most clus-
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tering methods, the number of clusters is either defined man-
ually or known a-priori. We propose a method to automati-
cally determine whether a sky/cloud image is single- or multi-
cluster. Finally, we evaluate our proposed labeling approach
on a sky/cloud image database with two- and three-level an-
notations.

2. RELATED WORKS

Performing automatic annotation of images is a common
problem in computer vision. A lot of related works have been
carried out to address it for various applications.

The co-occurrence model is a popular approach for image
annotation. Each image is divided into regions with key-
words, and the correlation between each region and keyword
are analyzed [4, 5]. Several other approaches [5–7] have
been proposed which assume the entire data distribution to
be dependent on a few latent variables. These latent variables
can be clusters, features, subspaces of high-dimensional data.
Once the latent variables are learnt from a set of training
images, the labeling framework is implemented.

In generating the different subspace transformations or
creating the various discriminating features of an image, the
number of clusters is either assumed a-priori or estimated us-
ing a set of inherent parameters. It is very important to deter-
mine the correct number of clusters for the specific applica-
tion. Amongst the various techniques introduced in the litera-
ture, gap techniques appear promising and have been used in
a variety of applications. Zhang and Zhu [8] have proposed
the entropy gap statistic that considers the change in entropy
of the dataset. Yang et al. [9] calculated the gap value per
pixel in extracting edge information from an image.

Previous works on cloud segmentation proposed several
techniques to obtain binary segmented images for various
sky/cloud images [10–13]. We proposed a probabilistic an-
notation of cloud/sky pixels in our previous work [14]. It
allows us to assign a value of belongingness to the cloud or
sky category for each pixel. We extend this idea to multi-
level labeling in this paper, where the different labels can be
learnt in a natural way, and new images can be annotated
automatically.



3. MULTI-LEVEL SEMANTIC ANNOTATION

We model the pixels in the sky/cloud image as a mixture of
continuous multi-variate distributions. In a formal setting, we
automatically estimate the set of model parameters that fits
the distribution of different labels in the image – clear sky,
thin cloud and thick cloud. These labels are learnt from the
different non-overlapping regions of the image, as described
in the following.

3.1. Generation of Feature Vectors

An important part for image annotation is the generation of
discriminative features which facilitate classification. It has
been observed that color is the dominant feature for detect-
ing cloud pixels [10, 13]. In our previous work [14], we have
provided an extensive analysis of 16 different color channels
for the task of sky/cloud image segmentation. Using statisti-
cal tools and techniques, we identified the color channels that
work best for cloud segmentation. They are the red channel
R of RGB color space, the Saturation channel S of HSV, and
the red-blue ratio R/B.

Suppose that a sample RGB image in the dataset is rep-
resented by Ii ∈ IRa×b×3, having a dimension a × b for
each of R, G and B channels. Using the appropriate color
channels for segmentation [14], we generate the probabil-
ity map Hi, (i = 1, 2, .., N) for all N images of database
S = {I1, I2, ..., IN}. Our objective is to convert these prob-
ability maps into three-level semantic regions. The steps for
generating this probability map and subsequently the input
feature vector in the model are the following:

• For each image Ii, the color channels R, S and R/B
are extracted to form the concatenated matrix Fi =
[R,S,R/B].

• Fuzzy c-means clustering is applied on Fi. The output
generated by this step is a probability map Hi ∈ IRa×b,
which denotes the probability of a pixel belonging to a
given cloud category.

• Hi ∈ IRa×b is reshaped into a column vector xi ∈
IRab×1; and xi serves as the feature vector for our se-
mantic segmentation approach.

After the generation of these input feature vectors xi for all
training images, the model parameters of the multi-variate
Gaussian distribution for three labels are computed.

3.2. Model for Sky/Cloud Images

The task of multi-level semantic annotation can be modelled
as a discrete labeling problem, wherein each image region
ξ = {ξ1, ξ2, ...} of the image Ii is annotated with its cor-
responding class labels. Assuming non-overlapping regions,

a pixel can possess a single class label from the set of la-
bels Ω = {Ω1,Ω2,Ω3}. This section introduces a statistical
model to map different image regions of an image Ii to dif-
ferent labels from the set Ω by modelling the joint probability
distribution P (ξ,Ω).

Consider a set S = {I1, I2, ..., IN} consisting of N
sky/cloud images representing varying sky/cloud scenarios.
The labels Ω1, Ω2 and Ω3 represent clear sky, thin clouds,
and thick clouds respectively, for example:

Ω1 =

{
1 if pixel is a clear sky
0 otherwise etc.

This essentially generates three categories – clear sky,
thin cloud, and thick cloud – each with pixels consisting of
both positive and negative samples. By this definition, all the
pixels of an image are categorically distributed into disjoint
labels. Assuming that the labels generated from set Ω are
independent and identically distributed from a multi-variate
Gaussian distribution, we can learn this joint probability dis-
tribution P (ξ,Ω). For example, from a set of manually anno-
tated sky/cloud images, we can learn how a patch of clear sky
looks like. In the same manner, we can model the distribution
of thick clouds and thin clouds. Subsequently, the labels for a
test image can be predicted accordingly.

3.3. Estimation of Model Parameters

From the set of training images, we estimate the input dis-
criminating feature x. Assuming x to be a continuous random
variable, we use Gaussian Discriminant Analysis to model the
different class labels using multivariate normal distributions.
For example, the clear sky label can be modeled as follows:

Ω1 ∼ Bernoulli(α)

(x|Ω1 = ψ) ∼ N (µψ,Σ),

where Ω1 follows a Bernoulli distribution with the parame-
ter α, and ψ = 0 and ψ = 1 denote negative and positive
samples for label Ω1, respectively. The negative samples for
label Ω1 follow a normal distribution with mean vector µ0

and covariance matrix Σ. Similarly, the distribution for pos-
itive samples have mean vector µ1 and covariance matrix Σ.
The distributions can be written as:

p(Ω1) = αΩ1(1− α)1−Ω1

p(x|Ω1 = ψ) =
exp

(
− 1

2 (x− µψ)TΣ−1(x− µψ)
)

(2π)n/2|Σ|1/2

describing the parameters for both positive (ψ = 1) and neg-
ative (ψ = 0) samples of clear sky label Ω1.

The likelihood for a given feature vector to belong to this



label is given by the log-likelihood of the data:

l(α,µ0,µ1,Σ) = log
m∏
i=1

p(x(i),Ω
(i)
1 ;α,µ0,µ1,Σ)

= log
m∏
i=1

p(x(i)|Ω(i)
1 ;µ0,µ1,Σ)p(Ω

(i)
1 ;α)

The maximum likelihood parameters α, µ0, µ1, Σ are esti-
mated by maximizing the log-likelihood l of the data for the
set of annotated training images.

Models for the other two labels thick cloud (Ω2) and thin
cloud (Ω3) are computed in exactly the same fashion. And
thus, in entirety, we generate three different multi-variate
Gaussian distributions consisting of both positive and nega-
tive samples for each of the categories.

4. DETERMINING THE NUMBER OF CLUSTERS

The number of clusters in the observed data space is an impor-
tant pre-requisite for image annotation and clustering. This is
because some sky/cloud images do not need any segmenta-
tion in the first place (e.g. because they show only sky). We
distinguish between two cases, single- and multi-cluster. If
an image is single-cluster, there is no need for segmentation.
Otherwise, the probability map is converted into a 3-level la-
beled image.

In our proposed approach, we use the S color channel
for determining the type of an image. From our previous
work [14], we observe that the Saturation channel (S) of the
HSV color model has the highest bimodality, making it a
good candidate for determining cluster number. Supposing
the inter-sample distance between two samples i and j in the
saturation channel is denoted by dij =

∑
(Si − Sj)

2. By
calculating these distances for all possible pairs in the obser-
vation space, we can represent the sum of all pairwise dis-
tances as D =

∑N
i,j dij . For the observation data space, we

calculate the within-class dispersion W = D
2N (assuming all

data points belong to a single cluster). A higher dispersion
indicates the likely presence of multiple clusters.

From a set of single-cluster training images in the database,
the average value W is computed. If W < W for a given
the test image, it is considered single-cluster (clear sky only)
and does not need any further segmentation; otherwise it is
considered a multi-cluster image.

5. EXPERIMENTAL EVALUATION & RESULTS

Currently, the only public image database for sky/cloud seg-
mentation is the HYTA database [10]. It consists of 32 images
capturing several sky/cloud scenarios under varying illumina-
tion conditions, and the corresponding binary segmentation
ground-truth images. However, in this paper, we evaluate the

performance for a higher number of semantic labels. There-
fore, instead of binary labels, we manually annotate all the
images of the HYTA database using three category labels –
clear sky, thin cloud and thick cloud – in consultation with
cloud experts from Singapore’s Meteorological Services.

In order to perform an objective evaluation of our pro-
posed approach, we report Precision, Recall and F-score val-
ues. Suppose that the true positive, true negative, false pos-
itive and false negative samples of a binary image are repre-
sented by TP, TN, FP and FN respectively. The precision and
recall scores are calculated as:

Precision = TP/(TP + FP ),

Recall = TP/(TP + FN).
(1)

In addition, we also report the F-score, which is the harmonic
mean of precision and recall:

F-score =
2× Precision× Recall

Precision + Recall
(2)

Fig. 1: Five image samples, from left to right: Original im-
age from HYTA database; probabilistic cloud detection us-
ing [14]; 3-level ground-truth; 3-level labels generated using
our proposed approach.

5.1. Number of Clusters

In HYTA, two images exhibiting a single cluster (clear sky)
are selected to determine the average value of within-class



dispersion. The value of W = 49.35 is found as per Sec-
tion 4. This serves as the threshold in evaluating the number
of clusters for images in HYTA database.1 Using the remain-
ing 30 images in the database as the test set, all are correctly
identified as either single- or multi-cluster with this approach.

5.2. Multi-level Semantic Labels

The entire HYTA database is divided equally into training
and testing sets. The training set consists of 16 images, from
which the different parameters α, µ0, µ1, Σ of the multi-
variate distributions are learnt individually for each of the
three class labels. These 16 training images are chosen ran-
domly from the dataset. We have observed that the classi-
fication accuracy is not significantly affected by the specific
choice and the number of training images.

During testing stage, the log-likelihood estimate for three
different classes for all pixels of the remaining 16 test images
are evaluated as described in Section 3.3. The label having the
maximum log-likelihood estimate will be chosen as the final
label for a particular pixel. In this manner, the output 3-level
annotation is generated. Fig. 1 shows the results obtained us-
ing our proposed approach, alongside the input image with
its manually annotated 3-level ground truth image and prob-
abilistic map. The generated 3-level output image matches
well with the corresponding ground truths.

For a more objective evaluation, precision, recall, and F-
score for clear sky, thin cloud and thick cloud are computed
over all images in the test set. Fig. 2 shows these results.
While our method lacks precision especially for thin clouds,
it achieves near-perfect results for clear sky and thick clouds.
Thin clouds are the most problematic because of their im-
precise edges between sky and cloud regions; owing to their
low-contrast, they are sometimes misclassified as clear sky or
thick clouds.
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Fig. 2: Evaluation results for 3-level semantic labeling of the
images in the HYTA database.

1 As the HYTA dataset contains no images with completely overcast sky,
we were not able to determine appropriate thresholds for that case.

5.3. Binary Semantic Labels

As there are no other methods for multi-level classification of
sky/cloud images, we apply our proposed approach to check
its efficiency for binary labels, in order to provide a com-
parative analysis with other state-of-art cloud detection algo-
rithms. The model parameters as described in Section 3.3
are thus learnt for binary labels (viz. sky and cloud). Finally,
the pixels of the test images are labeled using maximum log-
likelihood estimation.

We compare our proposed approach of semantic segmen-
tation with the current state-of-the-art cloud segmentation al-
gorithms [10–13] on the HYTA database. Fig. 3 shows the re-
sults of the different algorithms based on their corresponding
precision, recall and F-scores. Based on F-score values, our
proposed approach surpasses the performance of other algo-
rithms. The numbers also put in perspective the results shown
in Fig. 2, which compare favorably in terms of absolute F-
scores.
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Fig. 3: Evaluation results for binary semantic labeling of the
images in the HYTA database.

6. CONCLUSION

In this paper, we have introduced a systematic framework
whereby sky/cloud images captured by a ground-based cam-
era are automatically annotated into various labels. Unlike
conventional binary labeling in the task of sky/cloud image
segmentation, we presented an approach for multi-level label-
ing. Benchmarking on a publicly available database confirms
the effectiveness of our proposed approach. Future work will
focus on the rectification of remaining misclassifications of
thin clouds and the creation of a larger database for evalua-
tion. We also plan to provide a more fine-grained categoriza-
tion of clouds for better image interpretation, as done in [15]
for small image patches.
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