FAST-MATCH: FAST AND ROBUST FEATURE MATCHING ON LARGE IMAGES

Jonas T. Arnfred and Stefan Winkler

Advanced Digital Sciences Center (ADSC), University of Illinois at Urbana-Champaign, Singapore

ABSTRACT

Today’s cameras produce images that often exceed 10 megapix-
els. Yet computing and matching local features for images
of this size can easily take 20 seconds or more using op-
timized matching algorithms. This is much too slow for
interactive applications and much too expensive for large
scale image operations. We introduce Fast-Match, an al-
gorithm designed to match large images efficiently without
compromising matching accuracy. It derives its speed from
only computing features in those parts of the image that can
be confidently matched. Fast-Match is an order of magni-
tude faster than the popular Ratio-Match, yet often doubles
matching precision for difficult image pairs.

1. INTRODUCTION

Whenever we match local image features we are faced with a
choice between performance and accuracy. On one hand SIFT
features proposed by Lowe [/1]] have shown again and again to
compare favorably to other local image descriptors, especially
under unconstrained conditions [2H4]]. On the other, SIFT
keypoints and descriptors are slow to compute, the main rai-
son d’étre for the introduction of various alternative local im-
age features. In many computer vision applications we want
to increase the computational performance in order to work
on larger images, bigger image sets, at faster frame rates or
with more limited hardware, but we cannot give up the addi-
tional precision that SIFT affords us over other local features.

In this paper we introduce the Fast-Match algorithm, de-
signed to match features only in image areas that are likely
to correspond. This approach is much faster than traditional
methods because there is no need to compute descriptors for
areas in the image that are not matched. We provide two vari-
ants of the algorithm: The general variant functions like a
traditional matching algorithm and matches two unknown im-
ages. The retrieval variant on the other hand assumes that we
know one of the images we intend to match beforehand; un-
der this assumption, it can be a magnitude faster than existing
matching methods without compromising on accuracy.

The problem that Fast-Match attempts to solve is two-
fold. By matching only image areas that are likely to cor-

This work is supported by the research grant for ADSC’s Human Sixth
Sense Programme from Singapore’s Agency for Science, Technology and
Research (A*STAR).

respond, we hope to improve accuracy by entirely ignoring
parts of the images that would otherwise be a source of in-
correct correspondences. At the same time, this enables us
to improve computational speed by not computing keypoints
and descriptors for large parts of the images and at the same
time reducing the number of feature points we need to match.

Fast-Match makes use of an angular assumption to effi-
ciently find new matches in the geometric neighborhood of
already confirmed matches. However this constraint is only
applied locally to increase the number of matches, making
Fast-Match robust to outliers. In addition Fast-Match derives
much of its speed from the fact that it does not require an
initial set of local image features or matches.

2. RELATED WORK

Efforts to reduce the computational costs of finding nearest
neighbors to feature points have largely focused on metric
trees. Naively the set of nearest neighbors between features
in two images can be computed by brute force in O(n?),
where n is the total number of feature points in the two
images. Lowe proposed using the best-bin-first method to
approximately search for nearest neighbors [5,/6]. This re-
duces the computational complexity to O(nlogn), but even
approximate metric trees gain little compared with brute
force due to the high dimensionality of SIFT and the constant
costs incurred with constructing and searching in a metric
tree. Later work focused on improving approximate nearest
neighbor searches by using several KD-Trees simultaneously
while optimizing the tree structure using k-means to cluster
similar features [[7]. Recent work on knn-graphs shows a lot
of promise for high-dimensional cases [§]. We later review
these improvements and their effect on efficiently matching
large images.

Much research has focused on increasing the efficiency
of local feature matching. Fast-Match builds upon the foun-
dation of Ratio-Match as originally introduced by Deriche et
al. [9] and Baumberg [|10], even though Lowe [1] is usually
credited for it. The main idea is using the ratio of the similar-
ity of the best to second best match of a given point to evaluate
the uniqueness of the match. Their finding was later tested by
several independent teams, all concluding that thresholding
based on this ratio is generally superior to thresholding based
on similarity or returning all nearest neighbors [[1H3L|11].

For sparse local image features many solutions have com-
bined Ratio-Match with various geometric constraints to im-
prove matching. These constraints are based on assumptions
regarding the transformation between the query and target im-
ages. A commonly used example is RANSAC, where matches
are chosen from a pool of candidates according to how well
they approximate a global epipolar geometry [[12}/13]]. Similar
global angular and distance constraints can be used to filter a
set of matches [[14}/15]]. The problem can also be modeled as
a graph matching problem where each feature is a vertex, and
edge values correspond to a geometric relation between two
features [16L[17].

While geometric constraints have been shown to work
well, they are often susceptible to outliers and tend to be com-
putationally demanding. Furthermore, all of the above geo-
metric methods require a set of initial matches usually pro-
vided by Ratio-Match, which acts as a lower bound on their
running time. In practice even fast graph matching methods
are two or three magnitudes slower than Ratio-Match.

3. INTRODUCING FAST-MATCH

If we set out to design a truly fast matching algorithm, we
cannot rely just on optimizing the matching step. Finding and
computing descriptors alone can easily account for 80% of
the time spent for bigger images (cf. Fig.). For this reason
Fast-Match is designed to only compute features for the part
of the image we hope to match.

Fast-Match consists of 3 components: finding seeds, find-
ing matches, and exploring for other places where matches
might be, as outlined in Algorithm E] (the Fast-Match source
code is available for download athttps://github.com/
arnfred/Fast-Match).

Given a query image and a target image that we intend to
match and a confidence threshold 7, we obtain a set of seed
matches from the two images. For each seed match we look
at the matched position in the query and target images and
find a set of matches. We save these matches and their confi-
dence scores; for those that pass the confidence threshold T,
we obtain another set of seed matches. In this way we iterate
until we have no more seed matches and return the matches
and their confidence scores. 7 serves as a “thoroughness” pa-
rameter, i.e. how much time is spent matching, while the fi-
nal precision and recall can be adjusted by thresholding the
matches on their confidence scores at the end.

We propose a general and a retrieval variant of the algo-
rithm. The latter assumes that we know one of the images
ahead of time and can do some computations off-line. The
general variant makes those computations on the fly instead.

3.1. Initializing Seeds

Several strategies can be used to obtain a set of initial seed
matches. In practice we have found it efficient to resize both

Algorithm 1 Fast-Match

Require: Iyery, Itarge: : images, maxiter € N, 7 € [0, 1]
Mseeq < seed_matches(Iquery, ltarget)
Mfinal — g
Ofinal —
Mseen, < @
while M..q # @ A i <maxiter do
Miround get_matches(Mseed)
Cround < get_confidence(M,ound)
Mseea <+ get_seeds(Mmund \ Mseen, Cround, T)
Mseen — Mseen U Mseed
Mfi'nal — Mfinal U Mround
<~ Cfinal U Cround

Cfinal
end while
return Myinal, Crinal

images to thumbnails and use Ratio-Match to obtain a set of
matches and ratios that we then threshold with 7 to obtain the
initial seed matches. The thumbnail size needs to be chosen
such that objects of interest are still detectable by a keypoint
detector while remaining small enough to find matches effi-
ciently. We found empirically that — for images larger than
one megapixel — a thumbnail size of 300 x 300 pixels repre-
sents a good balance between speed and accuracy, indepen-
dently of the original image size.

3.2. Collecting Matches and Computing Confidence

If a seed match yields a connection between two points p,
in the query image and p; in the target image, we are inter-
ested in collecting all matches between the regions IR, and
R, centered at p, and p; respectively. From each region we
can extract a set of feature points between which we look for
a set of matches M, and associated confidence scores Cy.
Lowe and others have shown that the distance between
two SIFT descriptors is much less indicative of a true cor-
respondence than the ratio between the best and second best
match [[1H3L/11]. This ratio is more formally defined as:

r= d(fqvft) (l)

B d(fqvfb)7

where f, is a feature in the query image, f:, f; are the two
nearest neighbors of f; in the target image, and d(f;, f;) is
the dissimilarity between features (for SIFT this is the Eu-
clidean distance). The lower r, the higher the confidence in a
match. Using this ratio presumes that we expect each feature
in the target image to have at most one true correspondence
in the target image. Intuitively if we try to find a match for a
feature f; in an image that does not have any true correspon-
dences, then we would expect the two closest neighbors to be
roughly equally well matched with f;. On the other hand we
attribute high confidence to matches where the closest neigh-
bor is dramatically closer to f; than the second closest.

https://github.com/arnfred/Fast-Match
https://github.com/arnfred/Fast-Match

When applying this technique to obtain the set of confi-
dence scores Cy;, we are faced with the problem that for any
match in M, we only know the nearest neighbors amongst
the features of R, and R%;. To get around this, we compute
the features of one of the images, either offline (the retrieval
variant) or online (the general variant). For a given match be-
tween features f; and f; we can now find the second closest
neighbor f, and calculate the confidence as per Eq. [T}

In the retrieval scenario we can further optimize this step,
because we can approximate r by d(fi, f;)/d(fi, fo). If we
assume the target image is known in advance, this allows us
to pre-compute the denominator for all features in the target
image before we start matching.

3.3. Exploring for Matches

In each iteration we compute a new set of seed matches, i.e.
positions that might yield more matches in the image. For
each region R; evaluated during the collection step we now
have a set of matches and confidence levels that we can use to
predict whether the neighborhood of R; is worth exploring.

There are many possible heuristics for predicting promis-
ing regions, including local and global epipolar assumptions
and partial graph isomorphisms. However, for the sake of
simplicity and speed we choose an approach based on weak
angular assumptions, as illustrated in Fig.[T] In the target im-
age we collect all features within a given radius R;, while we
compute features in the rectangular R, in the query image.
For performance reasons we compute all features in the blue
square but match only the features inside the shaded area. If
a match is found between f,; and f; in the collection step, we
select three areas with potential for more matches based on
the position of f, in R,. The center of each is matched with
ft to produce three seed matches for the next iteration.

In practice it is necessary that these squares overlap in or-
der to detect features lying close to the edges. This incurs a
bit of overhead which is minimized by only collecting fea-
tures for groups of 9 squares. In order to avoid computing
the same matches or features twice, we need to make sure
that results are properly cached. A matrix containing ‘bins’
of features can be used to store features from different image
regions. Similarly a hash-set is suitable for keeping track of
which regions have already been matched and which matches
have already been found.

Query Image

) : feature

Target Image

Fig. 1: Exploration of features based on a match. The blue
areas were searched to obtain the match. The green areas are
candidates for obtaining more matches.

4. EXPERIMENTAL VALIDATION

4.1. Configuration of Fast-Match

The central parameters of Fast-Match are the confidence
threshold 7 for selecting seed matches and the final con-
fidence threshold applied to the total set of matches. For
our experiments we let 7 = 0.9 and create precision/recall
plots by varying the confidence threshold over the final set of
matches.

To achieve a good balance between speed and robustness
we make the region in which we extract features a square of
90x 90 pixels in size. We found this size to work well with the
SIFT feature descriptor. The window is split into nine smaller
squares (cf. Fig.[T). When a seed match falls in any of these
squares we match only the features within the smaller square.
We let both the regions and the smaller squares overlap each
other by 25 pixels at all sides in order to capture feature points
lying close to an edge. For the target image we find all fea-
tures within a radius of 50 pixels of the seed match.

4.2. Database

The 3D Objects dataset by Moreels and Perona [3] allows us
to experimentally compare matching algorithms over a large
range of object and surface types under lighting and perspec-
tive changes. Sample images from the dataset are shown in
Fig. 2l All photos were taken with a consumer camera in
3.1 megapixel resolution. We use images of 84 different ob-
jects photographed under 3 different lighting conditions at 12
angle intervals, conducting experiments with a total of 3024
image pairs.

Fig. 2: Sample images from the 3D Objects dataset .

To validate matches, Moreels and Perona proposed a
method using epipolar constraints [3} p.266], which we also
rely on here to generate the ground truth. To compute the
total number of possible true correspondences, we take each
feature in a query image and count how many of them have a
feature in the target image which would satisfy the epipolar
constraints.

We evaluate all algorithms by matching images at differ-
ent angular intervals. For each object we pick the image taken
at 10 degrees rotation as the query image. We then match this
image with the same object rotated an additional A degrees,
A € {5,10,...,60}. For every angle difference we compare
images taken under 3 different lighting conditions as provided
by the dataset. We calculate the result for all these image

== Fast-Match
15 degrees

Algorithm
10 degrees

0.0q [[[[[
0.00 0.05 0.10 0.15 0.20 0.25
45 degrees

[['
0.2 0.3 0.4

40 degrees

0.04 ' ' | | i
00 01 02 03 04 0.1

35 degrees

'
0.06

i
0.04
recall

i

I

|

i

0.0- Lo 004 ' [[[[1 0.04 '
0.00 0.02 0.04 0.06 0.08 0.10 0.120.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.00 0.0
recall recall

2

= Ratio-Match
20 degrees

= = Mirror-Match

25 degrees 30 degrees

008 012

60 degrees

[[004 [
0.10 0.15 0.20 0.00 0.04

55 degrees

L 0.0 [[[[1 0.04 f
0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05
50 degrees

1.0- 1.0-.

0.5
BN
I ~

0.04 0.04 0.04 o
0.08 0,00 0.010.02 0.03 0.04 0.050.060.07 0,00 0.01 0.02 0.03 0.04 0.05 0.06 000 001 002 003 004 005
recall recall recall

Fig. 3: Results for the 3D Objects dataset. Each plot shows the weighted average precision and recall over 84 objects pho-

tographed under 3 different lighting conditions.

pairs using a weighted average based on the number of ac-
tual correspondences for each pair, to ensure that each object
contributes equally to the final result.

4.3. Results

We compare the algorithm to the standard Ratio-Match [1] as
well as the newer Mirror-Match [18]. We do not include ge-
ometric algorithms because even the fastest are magnitudes
slower than Ratio-Match and as such are too costly when
matching features in large images under time constraints.

Fig. [3] shows the performance of the different matching
methods in our proposed framework for 12 increasingly big-
ger angle differences. Each precision-recall plot shows the ac-
cumulated results over all 3D objects, weighted by the num-
ber of possible true correspondences for the individual ob-
jects.

At small angular differences all algorithms show similar
performance at low recall, but Fast-Match is clearly superior
to Ratio-Match and Mirror-Match at higher recall, more than
doubling the precision at similar recall levels. At larger angu-
lar differences, the performance gap between Fast-Match and
the other algorithms extends to low recall as well, although
the overall precision of all algorithms declines.

Fig. @] compares the speed of the two variants of Fast-
Match to different variants of Ratio-Match on a 10-megapixel
image, as is typical of photos taken with today’s consumer
cameras and phones. The retrieval variant of Fast-Match
takes about one second, whereas a retrieval variant of Ratio-
Match with precomputed features takes eight seconds. This
is roughly equal to the time the general variant of Fast-
Match spends matching the two images without any pre-
computations. The speed of nearest neighbor search depends
on the specific algorithm, with the FLANN matcher [7] being
vastly superior to brute force and KGraph.

Timespent: WM Detecting + computing M Matching mm Overhead
30~
25-
20~
15
10-
0_ . .

Fast- Match
(Retrieval)

Ratio- Match Fast- Match Ratio- Match Ratio- Match
(Retrieval) (General) (Flann KD-tree) (KGraph)

Algorithm

Ratio- Match
(Brute-Force)

Matching on 10 megapixel images

Fig. 4: Computation times of different variants of Fast-Match
and Ratio-Match for a 10 megapixel image pair.

5. CONCLUSION

We have introduced Fast-Match in a general and a retrieval
variant. We compared Fast-Match to Ratio-Match and
Mirror-Match using 3024 image pairs of rotated 3D objects
to demonstrate that Fast-Match outperforms the other algo-
rithms significantly and in most cases doubles the matching
precision at similar recall rates. At the same time Fast-
Match can be nearly a magnitude faster than Ratio-Match.
The retrieval variant of Fast-Match is particularly effective
for matching a single given image to multiple large images.
The Fast-Match source code is available for download at
https://github.com/arnfred/Fast—-Match.

https://github.com/arnfred/Fast-Match

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

6. REFERENCES

David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, no. 2, pp. 91-110, 2004.

Krystian Mikolajczyk and Cordelia Schmid, “A perfor-
mance evaluation of local descriptors,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 27, no. 10,
pp. 1615-1630, 2005.

Pierre Moreels and Pietro Perona, “Evaluation of fea-
tures detectors and descriptors based on 3D objects,” In-
ternational Journal of Computer Vision, vol. 73, no. 3,
pp- 263-284, 2007.

Jared Heinly, Enrique Dunn, and Jan-Michael Frahm,
“Comparative evaluation of binary features,” in Proc.
European Conference on Computer Vision (ECCV),
2012, pp. 759-773.

Jeffrey S. Beis and David G. Lowe, “Shape index-
ing using approximate nearest-neighbour search in high-
dimensional spaces,” in Proc. Conference on Computer
Vision and Pattern Recognition (CVPR). 1IEEE, 1997,
pp- 1000-1006.

David G. Lowe, “Object recognition from local scale-
invariant features,” in Proc. International Conference on
Computer Vision (ICCV). IEEE, 1999, vol. 2, pp. 1150-
1157.

Marius Muja and David G. Lowe, “Fast approximate
nearest neighbors with automatic algorithm configura-
tion,” in Proc. International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory
and Applications (VISAPP), 2009, pp. 331-340.

Wei Dong, Charikar Moses, and Kai Li, “Efficient k-
nearest neighbor graph construction for generic simi-
larity measures,” in Proc. International Conference on
World Wide Web (IW3C2). ACM, 2011, pp. 577-586.

Rachid Deriche, Zhengyou Zhang, Quang-Tuan Luong,
and Olivier Faugeras, “Robust recovery of the epipolar
geometry for an uncalibrated stereo rig,” in Proc. Eu-
ropean Conference on Computer Vision (ECCV), 1994,
pp- 567-576.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Adam Baumberg, “Reliable feature matching across
widely separated views,” in Proc. Conference on Com-
puter Vision and Pattern Recognition (CVPR). 1EEE,
2000, vol. 1, pp. 774-781.

Julien Rabin, Julie Delon, and Yann Gousseau, “A
statistical approach to the matching of local features,”
SIAM Journal on Imaging Sciences, vol. 2, no. 3, pp.
931-958, 2009.

Martin A. Fischler and Robert C. Bolles, “Random sam-
ple consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381—
395, 1981.

Philip H. S. Torr and Andrew Zisserman, “MLESAC:
A new robust estimator with application to estimating
image geometry,” Computer Vision and Image Under-
standing, vol. 78, no. 1, pp. 138-156, 2000.

Jungho Kim, Ouk Choi, and In So Kweon, “Efficient
feature tracking for scene recognition using angular and
scale constraints,” in Proc. International Conference
on Intelligent Robots and Systems (IROS), Nice, France,
2008, IEEE, pp. 4086—4091.

Cordelia Schmid and Roger Mohr, “Local grayvalue in-
variants for image retrieval,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. 19, no. 5, pp. 530—
535, 1997.

Lorenzo Torresani, Vladimir Kolmogorov, and Carsten
Rother, “Feature correspondence via graph match-
ing: Models and global optimization,” in Proc. Eu-
ropean Conference on Computer Vision (ECCV), 2008,
pp- 596-609.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee,
“Reweighted random walks for graph matching,”
in Proc. European Conference on Computer Vision
(ECCV), 2010, pp. 492-505.

Jonas T. Arnfred, Stefan Winkler, and Sabine Siisstrunk,
“Mirror Match: Reliable feature point matching without

geometric constraints,” in Proc. Asian Conference on
Pattern Recognition (ACPR). IAPR, 2013, pp. 256-260.

