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ABSTRACT

Datasets of images annotated with eye tracking data constitute important ground truth for the development of
saliency models, which have applications in many areas of electronic imaging. While comparisons and reviews of
saliency models abound, similar comparisons among the eye tracking databases themselves are rare. In an earlier
paper,1 we reviewed the content and purpose of over two dozen databases available in the public domain and
discussed their commonalities and differences. A major issue is that the formats of the various datasets vary a lot
owing to the nature of tools used for eye movement recordings, and often specialized code is required to use the
data for further analysis. In this paper, we therefore propose a common reference format for eye tracking data,
together with conversion routines for 16 existing image eye tracking databases to that format. Furthermore, we
conduct a few analyses on these datasets as examples of what X-Eye facilitates.
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1. INTRODUCTION

Modeling saliency, which relates to detection/identification of the scene information that attracts visual attention,
has been an active topic of interest among the computer vision, graphics, human-computer interaction, and other
communities such as advertising. A number of saliency models taking into account bottom-up (or stimulus-based)
and top-down (or perception-based) factors have been proposed in the literature – Borji and Itti recently published
an exhaustive review.2 Eye-tracking databases typically provide ground truth for saliency models to learn image
regions of interest based on eye-movement patterns observed with human subjects. Recently, we reviewed over
two dozen publicly available eye tracking databases to help researchers identify the appropriate dataset for their
saliency studies.1 Nevertheless, a thorough comparison of eye-tracking data from different datasets has not yet
been attempted.

A major impediment to analyzing and comparing eye tracking databases is that they tend to provide data in
different formats, owing to the nature of hardware and software used for sampling and recording eye movements.
Eye movements comprise fixations, denoting stationary phases where scene information is absorbed by the
human visual system, and saccades, representing ballistic motion of the eyes to sample different scene regions.
Even as information regarding fixations and saccades (e.g. fixation start and end times, saccade begin and end
coordinates) can be extracted from raw eye tracking data, it can be quite tedious and confusing for researchers
to make sense of the data for further use. For instance, some eye trackers output gaze data with reference to
the stimulus, while others compute gaze positions with respect to screen coordinates. Therefore, in many cases,
specialized code is necessary for interpreting and converting the raw eye tracker output into a known reference
format.

To this end, we propose X-Eye, a reference format for describing eye movement data to facilitate comparison
and analysis of eye tracking databases. The conversion routines for 16 existing image-based eye tracking databases
to the X-Eye format can be downloaded http://vintage.winklerbros.net/x-eye.html. Also, in order to provide a
flavor of how a common format can facilitate data analysis, we look at some basic eye tracking statistics and
compare the center bias across datasets.

The paper is organized as follows. Section 2 presents related work and databases. Section 3 introduces the
proposed X-Eye reference format. Section 4 illustrates several example use cases for cross-database analysis.
Section 5 concludes the paper.
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2. EYE TRACKING DATASETS

2.1 Related Work

We presented an overview and comparison of over two dozen eye tracking databases in an earlier paper,1 reviewing
parameters such as the type of stimuli analyzed or constraints during data acquisition. That study was essentially
designed to facilitate future researchers in identifying and using the right dataset for their analyses. However, the
comparisons we presented there were based on “meta-data”, such as the number of images and subjects, whereas
we did not conduct any comparative analysis using the actual eye tracking data provided by these databases.

Recently, a few other works have also analyzed characteristics of eye tracking datasets, albeit as an aside to the
evaluation of saliency algorithms. Borji and Itti present a brief overview of image and video-based eye tracking
databases used for evaluation of saliency models as part of a survey of state-of-the-art saliency methods.2 Borji
et al. also compare the agreement between eye fixation maps and saliency predictions for 35 saliency models
for 3 image-based and 2 video-based datasests using three different types of evaluation scores.3 The analysis
concludes that in general, there is a gap to bridge in order to make saliency predictions human-like, and discusses
the need for incorporating top-down factors in saliency approaches as one of the key requirements to this end.

In a subsequent work4 analyzing indices used for evaluating saliency models and datasets employed for visual
attention prediction, the authors systematically consider the effect of factors such as center-bias on saliency
modeling, and compare the performance of 32 saliency models on 4 image-based eye tracking datasets. Their
analysis identifies the MIT CSAIL5 and NUSEF 6 datasets as the most suitable for understanding visual attention,
given the large number of stimuli and subjects for which eye movement recordings are available, and the KTH 7

and NUSEF 6 datasets as the hardest for saliency modeling.

2.2 Summary of databases

An overview of the test material, subjects, viewing setup, and other experimental details of each database is
provided in Table 2. Additional specifics of those eye tracking datasets that were not covered in our earlier
paper1 are discussed below. An up-to-date list of eye tracking databases is available on the author’s home page,
http://stefan.winkler.net/resources.html.

• DUT-OMRON 8 database contains eye movement recordings for 5172 natural, high-resolution images se-
lected from the SUN9 dataset. All images are of maximum 400 × 400 pixels resolution and contain one
or more salient objects with a complex background. A total of 25 subjects were involved in annotating
both salient objects through rectangles (5 such annotations were acquired per stimulus), and eye fixation
ground truth. During the experiment, each participant was instructed to draw rectangles around salient
objects in the image, as determined by their own perception. This helps to obtain a better understanding
of which salient scene objects were fixated by users, as the rectangle annotations facilitate the removal of
outliers commonly observed with eye fixation data.

• IRCCyN LIVE 10 dataset is part of a study comparing eye fixation density maps (FDMs) acquired from
different eye tracking systems. The authors analyzed the effect of stimulus presentation time and image
semantics and evaluated the impact of FDM differences on three applications, namely saliency modeling,
image quality assessment, and image retargeting. To this end, they compiled eye movement data in three
different laboratories (in different geographical locations) employing different eye tracking hardware, with
identical protocol. 29 images from the LIVE database11 comprising natural images were shown to 15-21
subjects. This eye tracking study confirms that despite significant differences in data acquisition conditions
(including human factors such as cultural differences), the resulting FDMs are very similar and can be used
as reliable ground truth.

• Memorability12 database was compiled to examine the relationship between image memorability and visual
attention. To this end, the authors recorded eye movements from seventeen subjects (10 male, 7 female) for
135 images from the image memorability dataset.13 The eye tracking data was used to demonstrate that
attention-related features such as scene coverage can better account for image memorability as compared
to low-level image features.

http://stefan.winkler.net/resources.html


3. X-EYE REFERENCE FORMAT

As mentioned in Section 1, a key impediment in analyzing eye movement data across different databases is that
the recorded data format varies for different datasets. To cite a few examples:

• Some eye trackers produce visual attention data in the form of fixations (coordinates plus durations), while
others generate only the raw gaze coordinates from which the above information can be extracted.

• The manner in which the gaze coordinates are output also varies depending on the eye tracking system
used – some output gaze positions with respect to the stimulus coordinate system, while others output
these positions with reference to screen coordinates.

• The data organization strongly varies from one dataset to another. While most of them provide separate
data for different images and observers, it can be non-trivial to establish which image or user some data
refers to. A few datasets provide one .mat file and organize the information using MATLAB structures,
while others come with multiple files and make use of meta-data fields or folder/file names to identify the
contents.

The above factors mean that each database comes in its own data representation and format. Other re-
searchers who want to make comparisons across databases have to spend significant time and effort converting
all the data to a canonical format. The main contribution of this work is that the proposed X-Eye format can
significantly facilitate the analysis and evaluation of eye tracking data.

The X-Eye eye movement descriptor format consists of the following information (an example is shown in
Figure 1):

1. Stimulus ID (name of the image stimulus used).

2. Stimulus dimensions (image width and height).

3. Subject ID. Together with stimulus ID, this allows for easier analysis on a per-stimulus and per-subject
basis (e.g. the computation of inter-observer agreement).

4. Number of eye fixations recorded for the subject.

5. Mean fixation duration for the subject. Together with the previous item, this enables the computation of
basic fixation-related statistics without having to actually parse the fixation data.

6. Fixation number denoting sequence of fixations made.

7. Fixation (x, y) positions. We universally adopt image coordinates here, which is advantageous on two
counts: no other information (such as screen resolution or scaling) is required to determine user-fixated
locations, and the need for writing additional code to center the stimulus (which is typical of eye tracking
systems) based on screen and stimulus dimensions is eliminated.

8. Fixation begin and end times. This information is useful when the temporal sequence of fixations (where
did the observers look during early and late fixations?) is of interest. The begin and end times are output
in milliseconds, and the quantities are computed assuming that the image stimulus was presented at time
t = 0.

9. Fixation duration – the difference between fixation begin and end times in milliseconds.

10. Inter-fixation duration – the time interval between the end time of the current fixation and the begin time
of the next, which can comprise one or more saccades.



image name = automan_06.png

image width = 1024

image height = 768

user name = subject_17

number of fixations = 13

average fixation duration = 238.769231

Fix no, Xpos, Ypos, Begintime, Endtime, Duration, Interfix

1 480.4 598.9 330 502 172 36

2 377.6 729.2 538 718 180 1212

3 113.9 494.2 1930 2134 204 52

4 61.9 197.2 2186 2470 284 52

5 493 160.5 2522 2806 284 28

6 533.3 208.9 2834 3102 268 48

7 158.4 495.2 3150 3382 232 24

8 123 539.7 3406 3566 160 44

9 212.6 273.5 3610 3766 156 40

10 381.2 103.2 3806 4214 408 56

11 840.8 421 4270 4558 288 44

12 668.3 704.5 4602 4878 276 44

13 808.2 578.8 4922 5114 192 0

Figure 1: Sample data for a given subject and image of the KTH dataset in X-Eye format.
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DUT-OMRON8 Yes No No No Image
FiFA14 Yes Yes No Yes Image

GazeCom Image15 No No No Yes Image
IRCCyN Image 116 Yes Yes No No Image
IRCCyN Image 217 No No No Yes Screen
IRCCyN LIVE10 No No No Yes Screen

KTH7 Yes Yes Yes No Image
LIVE DOVES18 Yes Yes No Yes Image
McGill ImgSal19 Yes No No Yes Image
Memorability12 Yes Yes No No Image
MIT CSAIL5 No No No Yes Image
MIT CVCL20 Yes Yes No Yes Image

MIT LowRes21 No No No Yes Image
NUSEF6 Yes Yes Yes No Screen
Toronto22 Yes Yes Yes No Screen
VAIQ23 No No No Yes Image

Table 1: Information provided by the various datasets, and data used for the conversion to X-Eye (highlighted in
bold). Raw eye tracking data are used whenever possible. Screen coordinates are converted to image coordinates.



Table 1 shows the type of data provided by each dataset. It also describes the strategy our conversion routines
follow. Some of the datasets only provide raw eye tracking data. In those cases, we adopt the acceleration-based
algorithm employed by Judd et al.5 to detect fixations given the raw gaze data and gaze sampling frequency.
Other datasets provide fixation locations and durations, but no information about inter-fixations. If those also
provide raw eye-tracking data, we only use the latter and process the data with the above-mentioned algorithm.
This allows us to recover the inter-fixation durations uniformly across all databases that provide raw data.
However, the resulting fixation information might differ from the one in the databases due to differences in the
extraction algorithm. Some datasets do not provide enough data to populate all the variables of the X-Eye
format, in which cases the missing fields are set to zero. As can be seen from Table 1, most databases provide
either raw eye tracking data or all the required timing information, with the exception of DUT-OMRON, IRCCyN
Image 1, and Memorability databases.

Furthermore, the IRCCyN Image 2, IRCCyN LIVE, NUSEF, and Toronto datasets provide fixation locations
in screen coordinates. The conversion process to retrieve the image coordinates is often described in their
documentation. For some experiments, the images are displayed at the center of the screen, while others resize
them to cover the full screen. In ambiguous cases, we plot the fixations points on top of the images and choose
the conversion whose result makes the most sense.

Raw-to-X-Eye conversion routines (in MATLAB code) as well as README files describing how to retrieve
the data for the 16 image-based eye movement databases listed in Table 2 can be downloaded from http://vintage.
winklerbros.net/x-eye.html. The conversion routines write the output to .txt and .mat files. We decided not to
release the converted eye tracking data as such, as this may be against the terms of use of some datasets.

4. EXAMPLE USE CASES

We now demonstrate various types of analysis that are made possible by our common reference format X-Eye.
We first compare a number of basic eye tracking statistics across datasets and then study the phenomenon of
center bias in more detail.

4.1 Basic statistics

To complement the meta-data analysis of our earlier paper,1 we compare the average number of viewers and the
number of images or videos in each database. This is shown in Figure 2. Clearly, there is a trade-off between
the amount of test material and the number of viewers, due to the amount of time needed for the experiments.
For example, the recent DUT-OMRON database has the most images by far, but only 5 viewers per image.
Differences between the data shown here and our earlier meta-data analysis are due to the fact that not all
subjects viewed all images in every experiment.
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Figure 2: Average number of viewers vs. number
of scenes.
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presentation time.

http://vintage.winklerbros.net/x-eye.html
http://vintage.winklerbros.net/x-eye.html


The average number of fixations per image and subject roughly increases with the average presentation time,
as shown in Figure 3. Figure 4 shows the proportion of time spent in fixations (as opposed to saccades), which
is approximately 80-90% of viewing time for most databases. Differences between datasets are expected, as they
differ in terms of the image content as well as the tasks given to subjects.

Finally, Figure 5 shows the total viewing time aggregated over all subjects and scenes, as an indication of the
overall amount of eye tracking data and fixations provided in each dataset. NUSEF has a clear lead with nearly
22 hours of eye tracking data, whereas the datasets at the opposite end (FiFA, GazeCom) have less than one
hour.∗ For certain databases (including e.g. NUSEF ), there is a substantial difference between the viewing time
estimated from the meta-data1 and the actual viewing time as computed from the eye tracking data, highlighting
the need to use the actual eye tracking data for accurate comparisons.
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Figure 4: Proportion of time spent in fixations as
a percentage of total.
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Figure 5: Total aggregate viewing time over all
subjects and images.

4.2 Center bias

To further demonstrate the utility of the X-Eye reference descriptor format, we analyze the extent of center bias
for the considered datasets. Center bias refers to the combined effect of two biases: the propensity of viewers
to preferentially attend to details around the image center (usually) before moving on to decode the remaining
scene details, and the tendency of photographers (content creators) to place the object(s) of interest near the
center of the scene being imaged. The phenomenon of center bias has been extensively discussed in a number
of saliency studies.3–5 At least two of them3,4 have investigated the influence of center bias on indices denoting
saliency prediction accuracy, but this analysis was restricted to only a few datasets.

For our analysis of center bias, we consider overlapping rectangular image regions. We define the center bias
as the amount of fixations falling inside the rectangle divided by the total amount of fixations. We weight the
fixations by their duration if this data is available. In the first step we compare the center bias for two rectangle
sizes, one containing the central 11% of the image area, and one containing the central 25% (see Figure 6). We
find the results to be highly correlated, as shown in Figure 7a (correlation coefficient of 0.9477, regression line:
y = 0.91x − 17). Therefore, we use the 25% region for the remainder of the analysis. The large variations in
center bias across databases are also evident from this plot, ranging from 40-80% (more on this below).

We then compare early center bias (i.e. percentage of fixations within the first 500 ms falling into the central
region) vs. overall center bias (i.e. percentage of overall fixations within the central region). This is shown in
Figure 7b. Early fixations can exhibit a higher center bias for a number of reasons. However, early center bias
is not very pronounced for most databases, except for two (KTH and IRCCyN LIVE ), whose early center bias
is in the 80-90% range, compared to their overall center bias of only 40-50%.

∗ The DUT-OMRON database does not contain fixation timing information, so we cannot compute the actual viewing
time, but according to the meta-data it should be about 14 hours.
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Figure 6: Central 11% and 25% rectangular regions used for the computation of center bias, overlaid on the
heatmap of all fixations of the IRCCyN Image 2 dataset.
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(a) 11% vs. 25% regions
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Figure 7: Analysis of center bias.

To demonstrate the distribution of fixations across the image area, we generate heat maps for each dataset.
We resize all the images to 100 × 100 pixels and modify their fixation locations accordingly. We create a matrix
of the same size, in which we add the durations of all fixations according to their location. We finally filter
the matrix with a Gaussian smoothing kernel (σ = 0.5) and normalize the results. Figure 8 shows the heat
maps of the LIVE DOVES and KTH datasets, which are each representative of several others. They illustrate
the significant differences between datasets in terms of spatial fixation distribution. The fixations of some are
concentrated near the center of the image, while for others they are spread out more evenly across the entire
image area.

Figure 9 shows the histogram of fixations locations for those two datasets. The proportion of fixations within
a given percentage range of the total image area represents the amount of fixations (weighted by their durations if
available) falling inside the central rectangle of that size divided by the total number of fixations. The histograms
are not cumulative; all fixations are thus counted only once (inside the smallest possible rectangle). The first
bar, which represents the fixations lying in the central rectangle covering 10% of the total image size, is much
larger for LIVE DOVES than KTH, consistent with the two corresponding heat maps shown in Figure 8.

5. CONCLUSIONS

We proposed X-Eye, a common reference format for eye tracking data. Conversion routines for 16 existing image
eye tracking databases to that format can be downloaded from http://vintage.winklerbros.net/x-eye.html.
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(a) LIVE DOVES (b) KTH

Figure 8: Heat maps of LIVE DOVES and KTH datasets.
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Figure 9: Histograms of fixation locations for LIVE DOVES and KTH datasets.

We demonstrate the utility of such a common reference format by conducting various comparative analyses
on these datasets. We find significant differences among datasets in terms of several basic statistics, and most
notably center bias. We hope X-Eye will facilitate further quantitative cross-database comparisons.
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Table 2: Eye tracking datasets at a glance (T is viewing time, D is viewing distance, d is screen diagonal, f is frequency).

Dataset Year Scenes Resolution Users Age T [sec] D [cm] d [in] Screen Eye Tracker f [Hz] Restraint

DUT-OMRON8 2013 5172 <400×400 5 2 Tobii X1 Light ≈30 None

FiFA14 2007 250 1024×768 7 2 80 CRT EyeLink 1000 1000 Chin rest

GazeCom Image15 2010 63 1280×720 11 18-34 2 45 22 CRT EyeLink II 250 Chin rest

IRCCyN Image 116 2006 27 ≈768×512 40 15 CRT Cambridge Research 50

IRCCyN Image 217 2010 80 481×321 18 19-45 15 40 17 LCD Cambridge Research 50

IRCCyN LIVE10 2013 29 1280×1024 54 18-60 15 70 both various

KTH7 2011 99 1024×768 31 17-32 5 70 18 CRT Eyelink I Headmount

LIVE DOVES18 2009 101 1024×768 29 µ =27 5 134 21 CRT Fourward Tech. Gen. V 200 Bite bar

McGill ImgSal19 2013 235 640×480 21 70 17 LCD Tobii T60 60

Memorability12 2013 135 384×384 17 students 5 65 19 faceLAB 5 60

MIT CSAIL5 2009 1003 ≈1024×768 15 18-35 3 61 19 Chin rest

MIT CVCL20 2009 912 800×600 14 18-40 75 21 CRT ISCAN RK-464 240 Head rest

MIT LowRes21 2011 1544 1024×860 8 18-55 3 61 19 ETL 400 ISCAN 240 Chin rest

NUSEF6 2010 758 1024×860 13 18-35 5 76 17 LCD ASL 30

Toronto22 2006 120 681×511 20 4 75 21 CRT

VAIQ23 2009 42 varying 15 20-60 12 60 19 LCD EyeTech TM3
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