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ABSTRACT
We propose Multi-task learning (MTL) for time-continuous or dy-
namic emotion (valence and arousal) estimation in movie scenes.
Since compiling annotated training data for dynamic emotion pre-
diction is tedious, we employ crowdsourcing for the same. Even
though the crowdworkers come from various demographics, we
demonstrate that MTL can effectively discover (1) consistent pat-
terns in their dynamic emotion perception, and (2) the low-level
audio and video features that contribute to their valence, arousal
(VA) elicitation. Finally, we show that MTL-based regression mod-
els, which simultaneously learn the relationship between low-level
audio-visual features and high-level VA ratings from a collection of
movie scenes, can predict VA ratings for time-contiguous snippets
from each scene more effectively than scene-specific models.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information processing;
I.5.2 [Pattern Recognition Design Methodology]: Pattern analy-
sis

General Terms
Measurement, Algorithms, Verification, Human Factors

Keywords
Multi-task Learning, Time-continuous emotion estimation, Crowd
annotation, Movie clips

1. INTRODUCTION
Affective video tagging has been acknowledged as an important

multimedia problem for long, given its utility for applications such
as personalized media recommendation. However, most content
and user-based media tagging approaches seek to recognize the
general emotion of a stimulus (typically a movie or audio/video
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music clip), and only a few methods such as [7] have attempted to
determine the dynamic of time-continuous emotion profile in the
stimulus. This limitation is partly attributed to the fact that inter-
preting and measuring emotion is an inherently difficult problem–
emotion is a highly subjective feeling, and the discrepancy between
the emotion envisioned by the content creator versus the actual
emotion evoked in consumers has been highlighted by many works.
Also, learning the relationship between low-level content (typically
in the form of audio-visual effects) and the high-level emotional
feeling over time requires extensive training data, with annotations
typically performed by multiple annotators for reliability, which is
both difficult and expensive to acquire.

Recently, crowdsourcing (CS) has become popular for perform-
ing tedious tasks through extensive human collaboration via the In-
ternet. When it is difficult to employ experts for analyzing large-
scale data, CS is an attractive alternative, as many individuals work
on smaller data chunks to provide useful information in the form of
annotations or tags. CS has been successfully employed to develop
data-driven solutions for computationally difficult problems in mul-
tiple domains like natural language processing [30], and computer
vision [33]. Two reasons mainly contribute to the success of CS–
(1) crowd workers are paid a fraction of the wages that experts are
entitled to, thereby achieving cost efficiency, and (2) the experi-
menter’s task becomes scalable when the original task is split into
smaller and manageable micro-tasks and distributed among crowd-
workers. Nevertheless, cost-effectiveness in CS is achieved at the
expense of expertise– crowdworkers may lack the technical and
cognitive skills or the motivation to effectively perform a given
task [19]. Therefore, efficient methodologies that are robust to
noisy data are crucial to the success of CS approaches.

In this paper, we propose Multi-task learning (MTL) for time-
continuous valence, arousal (VA) estimation from movie scenes
for which dynamic emotion annotations are acquired from crowd-
workers. Given a set of related tasks, MTL seeks to simultane-
ously learn all tasks by modeling the similarities as well as differ-
ences among them to build task-specific classification or regression
models. This joint learning procedure accounting for task relation-
ships leads to more efficient models as compared to learning each
task independently. For the purpose of learning the relationship
between low-level audio-visual features and corresponding crowd-
worker VA annotations over time, we ask the following questions:
(1) Given that emotion perception is highly subjective, and biases
relating to crowdworker demographics may additionally exist, can
we discover any patterns relating to their dynamic emotional per-
ception? The exercise of seeking to acquire a gold standard anno-



tation for each movie scene (or clip) via crowdsourcing is mean-
ingful only if such patterns can be discovered. (2) If the emotional
ground truth corresponding to each movie clip can be represented
by a single, gold standard emotional profile, can we discover cor-
responding audio-visual correlates for a movie clip collection (as
against a single movie clip), which in turn, can be more effective
for predicting the VA profile of a novel clip? Through extensive ex-
periments, we demonstrate that MTL effectively answers the above
questions, and is superior to single-task learning for VA prediction
in novel scene segments. To summarize, this paper makes the fol-
lowing contributions:

1. This is the first work to employ MTL for time-continuous
emotion prediction.

2. This is also one the first work to attempt dynamic affect pre-
diction for movie clips.

The paper is organized as follows: Section 2 overviews the lit-
erature. Experimental protocol employed for recording crowd-
workers’ affective responses is described in Section 3 and a brief
overview of MTL is provided in Section 4. Annotation data analy-
sis and emotion prediction experiments are presented in Section 5,
and conclusions are stated in Section 6.

2. RELATED WORK
We now examine related work on (1) Crowdsourcing, (2) Af-

fective movie analysis, (3) CS for affective media tagging and (4)
Multi-task learning.

2.1 Crowdsourcing
Steiner et al. [25] defined three types of video events and showed

that these events can be detected from video sequences via crowd-
sourcing upon combining textual, visual and behavioral cues. Von-
drick et al. [28] argued that frame-by-frame video annotation is es-
sential for a variety of tasks, as in the case of time-continuous emo-
tion measurement, even if it is difficult for human annotators. An
online framework to collect valid facial responses to media content
was proposed in the work of McDuff et al. [16], who found sig-
nificant differences between subgroups who liked/disliked or were
familiar/unfamilar with a particular commercial.

2.2 Affective movie analysis
A primary issue in affective multimedia analysis is the paucity of

reliable annotators to generate sufficient training data and in most
studies, only few annotators are used [21, 29]. Also, emotion per-
ception varies with individual traits such as personality [10], and
significant differences may be observed in affective ratings com-
piled from different persons over a small population. To address
this problem, a number of studies have turned to crowdsourcing.
In a seminal study affective movie study, Gross et al. [6] compiled
a collection of movie clips to evoke eight emotional states such as
anger, disgust, fear and neutral based on emotion ratings compiled
for 250 movie clips from 954 subjects. [2, 11, 24] are three recent
works that have attempted affect recognition from physiological re-
sponses of a large population of users to music and movie stimuli.

2.3 Crowdsourcing for affective media tagging
Soleymani et al. [22] performed crowdsourcing on a limited scale

to collect 1300 affective annotations from 40 volunteers for 155
Hollywood movie clips. In another CS-based affective video an-
notation study, Soleymani et al. [23] compiled annotations for the
MediaEval 2010 Affect Task Corpus on AMT, and asked workers
to self-report their boredom levels. In a recent CS-based media tag-
ging work, Soleymani et al. [20] presented a dataset of 1000 songs

Table 1: Video clip details. HALV, LALV, HAHV and LALV re-
spectively correspond to high-arousal low-valence, low-arousal
low-valence, high-arousal high-valence and low arousal-low va-
lence labels.

HALV LALV HAHV LAHV

No. of video clips 3 3 3 3
Min. length (sec) 79 80 86 59
Max. length (sec) 91 121 109 92
Avg. length (sec) 86.66 97.33 101 76.33

for music emotion analysis, each annotated continuously over time
by at least 10 users. Nevertheless, movies denote multimedia stim-
uli that best approximate the real world and movie clips have been
found to be more effective for eliciting emotions in viewers as com-
pared to music video clips in [1], and that is why we believe con-
tinuous emotion prediction with movie stimuli is important in the
context of affective media representation and modeling.

2.4 Multi-task learning
Recently, multi-task learning (MTL) has been employed in sev-

eral computer vision applications such as image classification [32],
head pose estimation [31] and visual tracking [34]. Given a set
of related tasks, MTL [4] seeks to simultaneously learn a set of
task-specific classification or regression models. The intuition be-
hind MTL is simple: a joint learning procedure which accounts for
task relationships is expected to lead to more accurate models as
compared to learning each task separately. While MTL has been
used previously for learning from noisy crowd annotations [9], we
present the first work that employs MTL for time-continuous emo-
tion prediction from movie clips.

3. EXPERIMENTAL PROTOCOL
In this study, we asked crowd workers to continuously annotate

12 emotional movie scenes adopted from [1] via a web-based user
interface– they were not allowed to access the scene content prior
to the rating task. Our objective was to understand and model their
emotional state over time, as they viewed the movie clips.

3.1 Dataset
We selected 12 video clips from [1] equally distributed among

the four quadrants in the valence-arousal space. Table 1 presents
characteristics of video clips from the different quadrants. All video
clips were hosted on YouTube for access during the CS task.

3.2 Experimental Protocol
We posted the annotation task on Amazon Mechanical Turk

(AMT) and other CS channels via the CrowdFlower (CF) platform.
CF is an intermediate platform for posting the AMT task on our
behalf. Moreover, CF provides a simple gold standard qualification
mechanism to discard outliers. If workers passed the qualification
test, they were considered qualified to perform a given task. How-
ever, pre-designed tests are very generic and limited to simple tasks,
which do not allow for trivially discarding low quality annotations.
So, we performed PHP server-side scripting and redirection, col-
lection and evaluation of all annotations real-time on our server via
HTTP requests, before letting workers submit the task. The archi-
tecture of the designed CS platform is shown in Fig. 1(a).

To ensure annotation quality, each crowd worker could only an-
notate 5 video clips, and at least 15 judgments were requested and
collected for each video clip. We also recorded facial expressions



(a) (b)

(c) (d) (e)
Figure 1: (a) Architecture of the designed Crowdflower platform (Turkers are the AMT crowdworkers). (b) User-interface for
recording workers’ emotional ratings and facial expressions. (c) Age, (d) gender and (e) locality distributions of crowdworkers.

of workers (not used in this work) as they performed the annota-
tion. Informed consent was obtained from workers and, prior to
the task, workers had to provide their demographics (age, gender
and location). Time-continuous valence/arousal annotations from
workers were compiled over separate sessions (a worker need not
annotate for both valence and arousal for the same clip under this
setting), and workers were also required to rate each clip for overall
emotional valence or arousal. Each worker was paid 10 cents per
video as remuneration upon successful task completion.

Workers did not get paid if their annotations and webcam facial
videos were not recorded on our server. To evaluate the annota-
tion quality, each video annotation was logged in XML format and
analyzed. A continuous slider was used to record emotional rat-
ing, and if the slider had not moved for more than 80% of the clip
duration, or if more than 20% of the data was lost, the annotation
was automatically discarded. Also, files smaller than a pre-defined
threshold were discarded. If the annotation task was left incom-
plete, a warning message notified the worker about the missing an-
notations. Workers could then re-annotate the missing videos and
get paid. For motivating workers to provide good quality anno-
tations, we rewarded them with online gift vouchers if they pro-
vided high-quality annotations. Furthermore, we introduced some
constraints such as: (1) Workers could not play (or rate) multiple
video clips simultaneously. (2) Workers could annotate a video as
many times as they wanted to. (3) Workers were allowed to use
only the Chrome browser for annotation due to unavailability of
HTML5 technology support in other browsers. (4) Media player
controllers were removed from the interface so that workers could
not fast forward/rewind the movie clips, and finally, (5) If the an-
notation stopped midway, it had to be redone from scratch.

3.3 Annotation Mechanism
A screen shot of the user interface for recording annotations is

presented in Fig. 1(b). The following components were part of the
continuous annotation and facial expression recording process.
Video Player: To provide an uninterrupted video stream for work-
ers with low bandwidth, we uploaded all movie clips onto YouTube.

On the client-side, YouTube JavaScript player API was integrated
and used in our web-based user interface.
Slider: The slider was used to collect the time-continuous VA rat-
ings of workers while watching the video clips. The slider values
ranged from -2 to 2 (very unpleasant to very pleasant for valence,
and calm to highly excited for arousal) for both factors. In order
to facilitate workers’ decision making, a standard visual scale Self
Assessment Manikin (SAM) image was displayed to the workers.
Webcam Panel: To upload facial expression of workers in real-
time, we used HTML5 technology to buffer the worker’s webcam
recording on the client-side when the play button was pressed. The
buffered video was automatically uploaded in compressed, VP8
open codec format on our server when the video clip finished play-
ing. Videos were recorded at 320x240 resolution, 30 fps.
Questionnaires: Workers needed to report (1) their overall emo-
tional (valence or arousal) rating for the movie clip on a scale of
-2 to 2, and (2) their familiarity with the clip to avoid the effect of
such bias on their ratings.

3.4 Annotation statistics and pre-processing
Overall, 1012 and 527 workers provided continuous valence and

arousal ratings respectively. Their age, gender and locality distri-
butions are as shown in Fig. 1(c),(d) and (e). As a preliminary step
towards ensuring good quality VA labels, we discarded those time-
continuous annotations with (1) missing values more than thresh-
old, (2) standard deviation less than threshold, and (3) missing
overall or general VA ratings.

4. MULTI-TASK LEARNING
As mentioned previously, Multi-task learning (MTL) models both

similarities as well as differences among a set of related tasks,
which is more beneficial as compared to learning task-specific mod-
els. Given a set of tasks t = 1..T , withX(t) denoting training data
for the task t and Y (t) their corresponding labels (ratings), MTL
seeks to jointly learn a set of weights W = [W1..WT ], where Wt

models task t. For the problem of time-continuous VA prediction,
the 12 movie clips used for crowdsourcing denote the related tasks.



In this work, we used the publicly available MALSAR library [35],
which contains a host of MTL algorithms for analysis. We were
particularly interested in the following MTL variants:

Multi-task Lasso: which extends the Lasso algorithm [26] to MTL,
and assumes that sparsity is shared among all tasks.

`21 norm-regularized MTL [3]: which attempts to minimize the
objective function

∑T
t=1 ‖W

T
t Xt−Yt‖2F +α‖W‖2,1+β‖W‖2F ,

where ‖.‖F and ‖.‖2,1 denote matrix Frobenious norm and `21
norm respectively. The basic assumption in this model is that all
tasks are related, which is not always true, and α, β denote the reg-
ularization parameters controlling group sparsity and norm sparsity
respectively.

Dirty MTL [8]: where the weight matrix W = P +Q, where P
and Q denote the group and task-wise sparse components.

Sparse graph Regularization (SR-MTL): where a priori knowl-
edge concerning task-relatedness is modeled in terms of a graph R
in the objective function. This way, similarity is only enforced be-
tween Wt’s corresponding to related tasks. The minimized objec-
tive function in this case is

∑T
t=1 ‖W

T
t Xt−Yt‖2F +α‖WR‖2F +

β‖W‖1 + γ‖W‖2F , where R is the graph encoding task relation-
ships, and α, β, γ denote regularization parameters as above.

5. DATA ANALYSIS AND EXPERIMENTS
Upon compiling VA ratings from crowdworkers, we firstly ex-

amined if any patterns existed in the dynamic annotations. This ex-
amination was important for two reasons– (1) predicting dynamic
VA levels for a stimulus instead of the overall rating is useful as it
allows for determining the ‘emotional highlight’ in the scene, and
comparing dynamic vs static ratings could help us understand how
dynamic emotion perception influenced crowdworkers’ overall im-
pression of a scene, and (2) given the subjectivity associated with
emotions and the uncontrolled worker population, patterns in dy-
namic VA annotations would indicate that a reliable, gold standard
annotation for a clip is achievable in spite of these biases.

Given the 12 clips (tasks) related in terms of valence and arousal
(from now on, clips/tasks 1-3, 4-6, 7-9 and 10-12 respectively cor-
respond to HAHV, LAHV, LALV and HALV labels), we employed
MTL to determine if some time-points influenced the overall emo-
tional perception for a movie clip more than others? To this end,
we used the time-continuous VA ratings to predict the overall VA
rating for each clip. For dimensional consistency, we only used the
VA ratings for the final 50 sec of each clip for this experiment, and
so, the x-axis in Fig. 2 denotes time to clip completion (between
50-1 sec). Weights learnt using the different MTL variants consis-
tently suggest that the continuous VA ratings provided in the latter
half for all of the movie scenes predict the overall rating better.
The third and fourth columns respectively depict learnt weights for
the six HV, LV/HA, LA clips, and represents the situation where
a-priori knowledge regarding task-relatedness is fed to SR-MTL.
Examining SR-MTL valence weights (cols 3,4 in row 1), one can
infer that general affective impressions are created earlier in time
for high-valence stimuli as compared to low-valence stimuli. Ex-
amination of SR-MTL arousal weights suggests that the most influ-
ential impressions regarding high-arousal stimuli are also created a
few seconds before clip completion.

Therefore, MTL enables effective characterization of patterns
concerning dynamic VA levels of crowdworkers, and this in turn
implies that deriving a representative, gold standard annotation from
worker annotations for each movie clip is meaningful. While MTL

has been used to learn from noisy crowd data [9], we simply used
the median value of the annotations at each time-point to derive the
ground truth emotional profile for each movie clip. Next, we will
briefly describe the audio-visual features extracted from each clip,
and show how the joint learning of the relationship between audio-
visual features and VA ratings allows for more effective dynamic
emotion prediction.

5.1 Multimedia Feature Extraction
Inspired by previous affective studies [18,29], we extracted low-

level audio-visual features that have been found to correlate well
with the VA dimensions. In particular, we extracted the features
used in [7,12] on a per-second basis for our regression experiments.

5.1.1 Video Features
Lighting key and color variance [29] are well-known video fea-

turesknown to evoke emotions. Therefore, we extracted lighting
key from each frame in the HSV space by multiplying the mean by
the standard deviation of V values. Color variance [12] is defined
as the determinant of the covariance matrix of L, U, and V in the
CIE LUV color space. Also, the amount of motion in a movie scene
is indicative of its excitement level [12]. Therefore, we computed
the optical flow [15] in consecutive frames of a video segment to
motion magnitude for each frame. The proportions of colors are
important elements for evoking emotions [27]. A 20-bin color his-
togram of hue and lightness values in the HSV space was computed
for each frame of a segment and averaged over all frames. The
mean of the bins reflect the variation in the video content. For each
frame in a segment, the median of the L and S values in HSL space
were computed; their average for all the frames of a segment is an
indication of the segment lightness and saturation [12]. We also
used the definitions in [29] to calculate shadow proportion, visual
excitement, grayness and visual detail. Extracted video features are
listed in Table 2.

5.1.2 Audio Features
Sound information in the form of loudness of speech (energy

of sound) is related to arousal, while rhythm and average pitch in
speech relates to valence [18], while Mel-frequency cepstrum com-
ponents (MFCCs) [14] are representative of the short-term sound
power spectrum. Commonly used features in audio and speech
processing [14] were extracted from the audio channels. To extract
MFCCs, we divided the audio segment into 20 divisions and then
extracted the first 13 MFCC components from each division. Us-
ing the sequence of MFCC components over a segment, we com-
puted 13 derivatives of MFCC, DMFCC, and mean auto correla-
tion, AMFCC proposed in [14]. Upon calculating MFCC, DMFCC
and AFCC (13 values each), we used their means as features. The
implementation in [17] was used to extract formants up to 4400Hz
over the audio segment, and formant means were used as features.
Moreover, we used the ACA toolbox [13] to calculate mean and
standard deviation(std) of (i) spectral flux, (ii) spectral centroid and
(iii) time-domain zero crossing rate [14] over 20 audio segment
divisions. We also calculated the power spectral density and the
bandwidth, band energy ratio (BER) , and density spectrum magni-
tude (DSM) according to [14]. Finally, we also computed the mean
proportion of silence as defined in [5]. All in all, 56 audio features
listed in Table 2 were extracted.

5.2 Experiments and Results
In this section, we attempt to predict the gold standard (or ground-

truth) dynamic V/A ratings for each clip from audio-visual fea-
tures using MTL, and show why learning the audio visual feature-



Valence

Arousal

Figure 2: Predicting overall clip emotion from dynamic annotations: (Top) W matrix learnt for valence using (from left to right)
`2,1, dirty and SR MTL (HV, LV). (Bottom) W learnt for arousal using (from left to right) `2,1, dirty and SR MTL (HA, LA). Larger
weights are denoted using darker shades.

Table 2: Extracted audio-visual features from each movie clip
(feature dimension listed in parenthesis).

Audio features Description
MFCC features (39) MFCC coefficients [14], Derivative of

MFCC, MFCC Autocorrelation (AM-
FCC)

Energy (1) and Pitch (1) Average energy of audio signal [14] and
first pitch frequency

Formants (4) Formants up to 4400Hz
Time frequency (8) mean and std of: MSpectrum flux, Spec-

tral centroid, Delta spectrum magnitude,
Band energy ratio [14]

Zero crossing rate (1) Average zero crossing rate of audio sig-
nal [14]

Silence ratio (2) Mean and std of proportion of silence in
a time window [5, 14]

Video features Description
Brightness (6) Mean of: Lighting key, shadow propor-

tion, visual details, grayness, median of
Lightness for frames, mean of median
saturation for frames

Color Features (41) Color variance, 20-bin histograms for hue
and lightness in HSV space

VisualExcitement (1) Features as defined in [29]
Motion (1) Mean inter-frame motion [15]

emotion relationship simultaneously for the 12 movie scenes is
more effective than learning scene-specific models. Fig. 3 shows
the model weights learnt by the various MTL approaches when
they are trained with features and VA ratings over the entire clip
duration for all clips. Here again, some interesting correlates be-
tween audio-visual features and VA ratings are observed over all
scenes. Considering video features, color descriptors are found to
be salient for valence, while motion and visual excitement corre-
late with arousal better, especially for HA stimuli, as noted from
SR MTL (HA) weights (column 7). Among audio features, the
first few MFCC components correlate well with both V,A.

Then, we examined if learning prediction models for all movie
clips was more beneficial than training a Lasso regressor per movie
clip. To this end, we held out time-contiguous data of length 5, 10
or 15 seconds from the first half (front) or second half (back) of
each of the clips for testing, while the remainder of the clips were
used for training. Optimal group sparsity regularization parameter
for the different MTL methods, as well as optimal Lasso parameter
were chosen from [0.01 0.1 1 5] employing 5-fold cross valida-
tion, and all other parameters (where necessary) were set to 1. The
root mean square error (RMSE) observed for V/A estimates over all
clips (tasks) is shown in Table 3. MTL methods clearly outperform
single-task Lasso, and consequent to our earlier finding that the lat-
ter half of all clips is emotionally salient, larger prediction errors
are observed for the back portion. Also, prediction errors increase
with the test clip size, and predictions are more accurate for arousal,

and with audio features. Finally, sophisticated MTL methods such
as dirty and SR-MTL outperform MT-Lasso and `2,1 MTL. Over-
all, these results are demonstrative of efficient MTL-based learning
utilizing relatively few training examples.

6. CONCLUSION AND FUTURE WORK
This paper explores Multi-task learning to estimate dynamic VA

levels for movie scenes. Since time-continuous VA annotations are
highly difficult to acquire, we employ crowdsourcing for the same.
Though emotion is a subjective feeling and the crowdworkers arose
from varied demographics, MTL could effectively capture patterns
concerning their dynamic emotion perception .The latter half of all
clips was found to be more emotionally salient, and influenced the
affective impression of the clip. We again utilized MTL to model
the relationship between the representative dynamic VA profile for
each clip and underlying audio-visual effects, and observed that
MTL approaches considerably outperformed clip-specific Lasso
models, implying that jointly learning characteristics of a collec-
tion of scenes is beneficial. Future work involves usage of (1) MTL
for cleaning crowd annotations, and (2) face videos compiled in
this work as an additional affective cue.
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`2,1-V Dirty-V SR-HV SR-LV `2,1-A Dirty-A SR-HA SR-LA
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Figure 3: Predicting dynamic V/A ratings using (top) video and (bottom) audio features. Larger weights shown using darker shades
(best viewed under zoom).

Table 3: RMSE-based V/A prediction performance of task-specific vs multi-task methods. RMSE mean, standard deviation over five
runs are reported. Best model RMSE is shown in bold.

Front Back
5 s 10 s 15 s 5 s 10 s 15 s

Valence

Video

Lasso 0.429±0.041 0.816±0.583 1.189±0.625 0.584±0.024 0.881±0.057 1.125±0.064
MT-Lasso 0.191±0.028 0.319±0.064 0.549±0.042 0.206±0.014 0.443±0.067 0.593±0.108
`21 MTL 0.193±0.030 0.326±0.063 0.565±0.047 0.207±0.015 0.450±0.066 0.606±0.113

Dirty MTL 0.452±0.141 0.840±0.293 1.179±0.400 0.308±0.105 0.607±0.140 0.801±0.129
SR MTL 0.193±0.030 0.325±0.064 0.563±0.046 0.207±0.015 0.450±0.066 0.607±0.113

Audio

Lasso 0.475±0.030 0.712±0.069 0.851±0.081 0.634±0.016 0.860±0.027 1.174±0.034
MT-Lasso 0.241±0.023 0.348±0.014 0.487±0.038 0.237±0.024 0.400±0.039 0.527±0.033
`21 MTL 0.243±0.020 0.359±0.012 0.520±0.029 0.247±0.026 0.392±0.029 0.553±0.028

Dirty MTL 0.299±0.023 0.473±0.019 0.751±0.060 0.312±0.043 0.524±0.042 0.692±0.072
SR MTL 0.248±0.017 0.365±0.015 0.526±0.027 0.252±0.027 0.404±0.033 0.567±0.026

Arousal

Video
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