
WADE: Simplified GUI Add-on Development for Third-party
Software

Xiaojun Meng
1
, Shengdong Zhao

1
, Yongfeng Huang

1
, Zhongyuan Zhang

1
, James Eagan

2
,

Ramanathan Subramanian
3

1
NUS-HCI Lab, National University of Singapore,

2
Telecom ParisTech,

3
ADSC, University of Illinois at Urbana-Champaign

1
{xiaojun,zhaosd}@comp.nus.edu.sg,

1
xgjonathan@gmail.com,

1
zhang_zhongyuan@nus.edu.sg

2
eagan@telecom-paristech.fr,

3
subramanian.r@adsc.com.sg

Figure 1: WADE overview: 1) Kevin wants to make the following modifications to the original Paint.NET interface i) change menu

labels from English to Chinese, ii) remove unused menus and icons, and iii) add a new “undo all” function. To this end, he 2)

Installs WADE in Paint.NET, 3) Clones the Paint.NET GUI into the GUI builder of a WADE-supported IDE. Then, he (a) modifies

the GUI using a WYSIWYG editor, and (b) writes code associated with the “undo all” widget via the event handler template. 4) All

the above changes are compiled to an add-on that can be installed into Paint.NET for easy and convenient future use.

ABSTRACT

We present the WADE Integrated Development

Environment (IDE), which simplifies the modification of

the interface and functionality of existing third-party

software without access to source code. WADE clones the

Graphical User Interface (GUI) of a host program through

dynamic-link library (DLL) injection in order to enable (1)

WYSIWYG modification of the GUI and (2) the

modification of software functionality. We compare WADE

with an alternative state-of-the-art runtime toolkit

overloading approach in a user-study, finding that WADE

significantly simplifies the task of GUI-based add-on

development.

Author Keywords

WADE; GUI; Add-on Integration; WYSIWYG; IDE

ACM Classification Keywords

H.5.2. Information Interfaces and Presentation: User

Interfaces

General Terms

Human Factors

INTRODUCTION

Software rarely fulfills the needs of all users all the time [7,

12]. Mindful of the need to make software adaptable to

individual needs, developers typically allow for software

customization by providing:

 Capabilities for reconfiguring existing features and

functions to suit personal taste (e.g., via preferences

panes or dot files), or

 Software architecture for incorporating add-ons (e.g.,

using plugins, scripts and/or extensions) to

enhance/modify the behavior of the original application.

While these approaches can provide users with a great deal

of control, every approach necessitates additional effort

from the software developers to explicitly provide

customization support at the software development stage.

For example, plugins, scripting interfaces and extensions

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, ON, Canada.

Copyright © 2014 ACM 978-1-4503-2473-1/14/04..$15.00.

http://dx.doi.org/10.1145/2556288.2557349

mailto:subramanian.r@adsc.com.sg
http://dx.doi.org/10.1145/2556288.2557349

require the developer to provide and maintain an external

API to their software, which may potentially require

maintaining an additional and separate interface to internal

functionality.

Owing to the above issues, many software developers do

not provide support for add-ons. Even when they do, such

support is often limited [1]. To address this limitation,

much research has focused on approaches that enable third-

party developers to modify the interface or behavior of

existing applications without access to source code or to an

external API. These approaches typically work by either: 1)

operating on the surface-level of the interface, intercepting

input events and output pixels before they are delivered to

the application (e.g., Prefab [2, 3], Façade [14]), or 2)

integrating with the toolkit to gain access to the internal

program structures (e.g., Scotty [4], SubArctic [5]). For

convenience, we call the former as surface-based

approaches and the latter as toolkit-based deep approaches.

Surface-based approaches allow modifications to GUI

elements without access to the internal structure of an

application. For example, Façade allows for reconfiguring

GUI elements via a simple drag and drop interface [14].

However, such approaches are limited by their ability to

infer the structure and functionality of the interface because

they do not have access to the internal program objects or

their semantics. E.g., adding new functionality or

modifying the behavior of a GUI widget is difficult to

accomplish using surface-based approaches [4].

This limitation can be overcome to some extent by toolkit-

based deep approaches such as Scotty [4] or SubArctic [5],

which operate below the surface of the program to reveal

the underlying program logic and functionalities. This

allows them to alter the system’s appearance and behaviors

beyond the surface level. However, toolkit-based deep

approaches can be challenging to use. They require a

thorough understanding of the relevant parts of the system

in order to realize the desired behavior. Even for

experienced developers, much effort is needed to make

relatively simple modifications to third party software.

Therefore, there exists a trade-off between generalizability,

ease of use, and power (the ability to perform deeper

modifications). While all previous approaches have their

advantages, additional solutions are still needed to better

balance the power and ease of use for runtime modification

of third-party software.

In this paper, we propose WADE, a simplified and

WSYWYG Add-on Development Environment that can

ease the task of modifying GUI-based functions in existing

software with or without source code, while still enabling

developers to make deep changes to the software behavior.

To achieve this, WADE injects a dynamically-linked library

(DLL) into the host program to retrieve the GUI hierarchy

of the host program. It then clones the interface in the IDE

so that properties of GUI elements can be directly modified.

Furthermore, WADE provides scaffolding to directly

associate event handlers to existing widgets, so that

enhancing/modifying software behavior becomes simpler.

Figure 1 shows an example add-on development scenario

using WADE. Currently, WADE supports add-on

development using both the open source SharpDevelop 4.2

and the Microsoft Visual Studio 2012 Ultimate IDEs for

Windows Form applications on the Windows XP and

Windows 7 platforms.

We conducted an experiment to compare WADE with a

Scotty-like toolkit-based deep approach for modifying third

party applications. Our results show that users subjectively

found WADE much easier to use, and were objectively able

to develop GUI-based modifications 2.4 times faster than

the alternative approach on average. To summarize, the

contributions of this work are:

 We present the WADE prototype along with its software

architecture as an integrated solution for significantly

facilitating add-on creation for third party software

without source code.

 The WADE IDE provides scaffolding for code-based

GUI modification through template generation, thereby

enabling robust implementation of the complex

boilerplate associated with runtime modification.

 We present the results of an empirical comparison

between WADE and the state-of-the-art Scotty approach

for modifying software [4], which shows that WADE is

significantly faster for GUI modifications.

RELATED WORK

As previously mentioned, surface-based adaptation [2, 3,

14, 15] and toolkit-based subsurface modification [4, 5, 16]

are the two main approaches that support third-party

application modifications without access to the software’s

source code. As a comprehensive review of the different

variants of these two approaches has already been discussed

in Eagan et al. [4], we now highlight those works most

relevant to WADE.

Surface-level modification

Surface-level modifications do not require any support by

the application developer. Instead, they operate on the

interface that is presented to the user and the input events

he or she provides. For example, Yeh et al.'s Sikuli

scripting environment [1] allows users to write scripts that

reference screenshots of particular controls, to refer to

existing application elements.

Stuerzlinger et al.'s UI Façades [14] intercept individual

widgets as they interact with the window server. This

allows a developer to easily replace them at the window

server level with an alternate implementation, such as by

regrouping together widgets from different applications or

replacing a radio button with a pop-down menu. Dixon and

Fogarty's Prefab [2] examines pixels as they are drawn on

the screen to infer which parts correspond to which widgets.

It then allows the interception and replacement of these

pixels to change the output of a particular interface.

Combined with input redirection, Prefab can enable

alternate software functionality.

However, all of these solutions are limited by their ability

to infer the structure and functionality of the interface. They

do not have direct access to internal program objects or

their semantics. As a result, it is typically challenging for

such approaches to make modifications that alter both GUI

elements and their underlying program logic. Such

limitations can be overcome to some extent by toolkit-based

deep modification approaches.

Toolkit-based deep modification

Edwards et al.'s SubArctic toolkit [5] extends Java's AWT

to provide explicit hooks that allow third-party developers

to add new UI modifications. These hooks provide specific

support for extensibility, allowing a third-party developer to

add new functionality to existing applications built with the

SubArctic toolkit, without explicit software support.

However, UI modifications are only feasible for

applications built using the SubArctic toolkit. For other

types of applications, such modifications become infeasible.

Eagan et al.'s Scotty [4] uses injection to perform runtime

toolkit overloading, in which an existing toolkit is altered

specifically to provide explicit support for modifications. It

provides a meta-toolkit for developers to modify existing

third-party applications. Third-party developers must,

however, explicitly inspect and make sense of the existing

application before eventually applying acquired knowledge

in a separate coding environment [6, 9]. This process can be

complex, creating barriers that limit such modifications to

experienced and dedicated programmers.

USING WADE

Our goal with WADE was to create an interface that unifies

the various tasks and tools involved in creating third-party

program modifications. In contrast to Scotty, where sense-

making and coding are independent, WADE integrates the

two phases into a single environment, making software

modification more user-friendly and practicable even to

novice programmers.

A third-party developer can use WADE to make a variety

of modifications to an application, such as a) basic property

changes to a GUI’s widgets, b) altering actions associated

with interface elements, and c) adding entirely new

functionalities. We demonstrate the utility of WADE

through the following scenarios. All scenarios have been

implemented using WADE.

Language localization and template creation

Kevin has created a diary template for Notepad.NET and

wants to share it with his Russian friend Ivanov, who is not

comfortable with English. Unfortunately, Notepad.NET

does not currently have a Russian translation, so Kevin

loads the WADE property editor add-on into Notepad.NET.

In the property editor, he systematically changes each

widget’s label to its Russian translation, as shown in Figure

2. He then exports those changes to a new add-on

component that Ivanov can load into his English copy.

Figure 2: Changing the label of the program from English to

Russian using WADE’s property editor. The user first selects

the GUI widget (the New button), and types its Russian name

in the text field of the property editor. Changes to the text are

immediately reflected in the host GUI.

Kevin then decides to add a toolbar button as a shortcut to

the new diary template he has created. While the property

editor can alter properties of existing widgets, it cannot add

new widgets. Kevin loads the WADE IDE and chooses the

Clone GUI command to clone the Notepad.NET interface

into a new project. Using the WADE add-on that Kevin

already loaded into Notepad.NET for translation, the clone

command walks the interface hierarchy and serializes it to

the WADE IDE. In the WADE IDE’s GUI builder, Kevin

then adds a new toolbar button for the diary. He then uses

WADE to generate an event handler template, into which

he writes the code to load his new diary template.

Figure 3: Using WADE, one can easily add an external service

to the host program. The utility enabling batch image

conversion to JPEG, BMP and PNG is added to Paint.NET by

linking to the ImageMagick graphic library.

Link to external function call

Lee took a lot of photos in RAW format on her recent trip

to Toronto and wants to convert them to JPEGs so that she

can open them in Paint.NET. Unfortunately, Paint.NET

does not have a batch conversion interface. There is a

command-line tool that offers that capability, but she can

never remember the right incantation to make it work. She

clones Paint.NET’s interface into WADE and adds a new

Batch Conversion menu (Figure 3). She then uses

WADE’s event handler template to invoke the appropriate

actions using the command line library, compiles the add-

on and installs it into Paint.NET.

Discussion

The above scenarios illustrate some of the different kinds of

third-party program modifications that WADE supports. In

the first example, Kevin is able to provide a translation for a

third-party interface for his friend Ivanov, just by using

WADE’s property editor add-on for existing programs. For

more complex modifications to the interface, such as when

Lee adds batch conversion support to Paint.NET, it is

necessary to write some code for the new functionality.

Here, WADE provides a) support to clone the existing

interface into a new project and b) scaffolding to help Lee

write her event handlers. The only code she needs to write

is the code specifically related to her functionality, which

she can then integrate into the cloned GUI hierarchy using

WADE’s GUI editor. We present the detailed

implementation in the following sections.

Comparison with previous approaches

Other tools provide similar kinds of third-party program

modification. Façade [14] enables the user to easily

simplify an interface by removing and regrouping widgets.

However, it does not support changing labels, font styles,

background images, etc.

Prefab uses a localization example similar to Kevin’s

scenario in order to show the power of pixel-based

approaches. However, Prefab can only access pixels but not

the text, and must therefore apply a character recognition

process to extract associated text strings. In contrast,

WADE retrieves the original label text directly from the

host application’s internal structure.

The remaining modifications require deep access to the

program’s internal structures. As such, surface approaches

such as Façade and Prefab cannot pierce through the

surface to decipher these structures.

Toolkit-based subsurface approaches, such as Scotty, can

accomplish all the tasks above, but do not provide the

scaffolding and support of an IDE that WADE does. In

order to perform language localization, for example, a

developer must inspect the UI hierarchy and associate

program objects to identify widgets and corresponding

labels, before writing the appropriate code from scratch to

change the labels to another language. WADE, on the other

hand, simplifies this process by presenting a unified

environment and scaffolding for many of these changes.

We now describe how WADE facilitates software

modifications using the GUI builder.

WADE IDE FOR ADD-ON DEVELOPMENT

While the details of developing add-ons for third-party

software without source code can be complex, the basic

idea involves two important aspects. First, third-party

applications may not come with a pre-designed add-on

architecture. Therefore, an environment should be designed

in which the host application can manage and communicate

with add-ons created and integrated with it at a later time.

Second, because the application source code is not

available, the IDE must facilitate understanding of the host

application’s internal structure and provide tools to support

the creation of add-ons.

Injecting WADE add-on manager to host application

To achieve the first goal, WADE adopts an approach

similar to Scotty’s, by injecting an add-on manager into the

host application’s process space. While Scotty is designed

to work on the Mac OS X Cocoa platform, WADE is

developed for Windows Form applications on the Windows

operating system. WADE uses the registry key binding

technique to insert compiled code, in the form of a

Dynamic Linked Library (DLLs), into the host application

at runtime. Once loaded, the injected DLL can use the

CreateRemoteThread method to create threads that run in

the virtual address space of the host processor. This allows

it to serve as an add-on manager to load and register any

compiled add-ons (also in the form of DLLs) within the

host application [13].

Supporting third-party add-on development

However, simply enabling external add-ons to be integrated

with the host application is not enough. In order to create

meaningful add-ons, a third-party programmer must make

sense of an existing application, and apply that knowledge

to the development of any new functionality.

Scotty provides various tools including a hierarchy browser,

an object inspector, a widget picker, and an interactive

interpreter (Python) to support sense-making in the Cocoa

environment [4]. While none of the individual tools may be

too difficult to use, they only provide partial answers.

Knowing how and where to get the different pieces of

information, and discovering how to combine them

effectively to obtain a high level picture, are both tedious

and challenging. Therefore, typically, only experienced

programmers are able to use Scotty-like approaches.

In order to reduce the knowledge barrier involved in

integrating the different tasks mentioned above, we

introduce an IDE specifically for third-party add-on

development. An IDE is a software application that

provides comprehensive facilities to computer programmers

for software development. It is designed to maximize

programmer productivity by providing tightly-knit

components for authoring, modifying, compiling, deploying

and debugging software with similar user interfaces. The

IDE, therefore, is more user-friendly and powerful as

compared to multiple distinct tools provided by Scotty.

Modern IDEs often come with an integrated GUI builder

(also known as GUI editor), which simplifies GUI creation

by allowing the designer to arrange widgets using a drag-

and-drop WYSIWYG editor. As today’s user interfaces are

commonly programmed using an event-driven architecture,

GUI builders also simplify creation of event-driven code,

by supporting code that connects widgets with the incoming

(input) and outgoing (drawing) events that trigger functions

providing the application logic.

Integrating WADE with the IDE and GUI builder

However, integrating an IDE with a GUI builder into the

third party add-on development process is no simple task.

GUI builders in existing IDEs are designed to facilitate the

creation of new interfaces from scratch, rather than to

modify existing interfaces. In addition, existing GUI

builders tend to assume that source code associated with the

GUI components will be available. In our case, however,

that crucial piece of information is missing.

In order to enable the WADE GUI builder to modify GUI

components and their associated program logic for a third-

party application, the following steps are needed:

1) Extract the GUI hierarchy information from the host

application.

2) Send this information to the GUI builder inside of an IDE.

3) In the IDE, convert this information into a format that can

be displayed as GUI widgets in the GUI builder, so

programmers can manipulate them in a WYSIWYG

fashion.

4) Analyze and compile the changes made by the

programmer into an add-on that can correctly modify the

appearance and behavior of the host application at

runtime.

Before elaborating on the implementation process, we will

first define a few terms.

GUI frameworks typically organize widgets into a tree. The

root tree has sub-trees that represent windows and their

associated widgets.

We term the root tree of the host application as host GUI

hierarchy, which contains many host widget sub-trees.

Each host widget sub-tree represents a window that has a

hierarchy of host widgets.

We replicate the host GUI hierarchy inside the IDE’s GUI

builder. The replicated copy is called the cloned GUI

hierarchy, which consists of many cloned widget sub-trees.

Each cloned widget sub-tree has many cloned widgets.

The relationship between these terms is illustrated in the

left and right panels of Figure 4. We now describe in more

detail the steps involved in using WADE to modify GUI

components and associated program logic for a third-party

applications.

Step 1: Extract GUI hierarchy information

We overload the Injected Add-on Manager to perform

several additional steps beyond basic add-on management.

In order to gain access to all of the widgets in the host GUI

hierarchy, the Injected Add-on Manager walks each of

these trees to extract its structure and to identify the

properties (e.g., name, size, location, label, etc.) of each

widget in the hierarchy. We use the

System.Windows.Forms.Control class in .NET, whose

controls property exposes a collection of all of these child

controls. Through this component, we can access the

structure and properties of an entire application's existing

interface.

In addition, the Injected Add-on Manager constructs a

component dictionary of all the widgets of the unmodified

host GUI hierarchy by using the name and address of each

widget as a (key, value) pair in the dictionary. This

information is saved as a reference point so that any

potential changes made by a third-party programmer using

the IDE can later be discovered.

Figure 4: WADE components: the Injected Add-on Manager

(left panel) inside the host application manages add-ons and

communicates the GUI information with a compatible IDE via

the WADE IDE Add-on component (right panel). The WADE

IDE Add-on then clones the host application’s GUI in the

IDE’s GUI Builder to allow WYSWYG modification of the

original UI. The changes made in IDE can then be compiled

into a third-party add-on to alter the appearance and behavior

of the host application.

Step 2: Send information to the GUI builder

The Injected Add-on Manager then serializes the extracted

properties of each host widget via the WADE IDE Add-on to

the IDE. For most widgets, information such as name, size,

location, text, etc. are directly sent through a basic text

stream. For widgets with background images or complex

structures, such information is first saved as cache files in

image or XML format before being transferred over.

Step 3: Convert and present GUI information in GUI builder

After receiving complete GUI information from the

Injected Add-on Manager, the WADE IDE Add-on then

constructs a project with the same UI properties as

extracted from the original program. With the extracted UI

information, the WADE IDE Add-on clones the existing

interface into a new project in the IDE. In our current

WADE implementation, we have integrated the WADE IDE

Add-on with SharpDevelop 4.2 and Microsoft Visual Studio

2012 Ultimate to provide code and GUI builder support.

The WADE IDE Add-on uses the serialized information to

replicate the host GUI hierarchy on the canvas of the

supported IDE’s GUI builder.

Step 4: Analyze and apply changes

Third-party add-on developers can then modify the cloned

GUI hierarchy in a WYSIWYG fashion. This modified

cloned GUI hierarchy and its associated program behavior

is compiled into an add-on (in a DLL) that can be loaded

into the host application by the Injected Add-on Manager.

Using the earlier constructed component dictionary, the

Injected Add-on Manager can then examine the modified

cloned GUI hierarchy inside the add-on and apply the

changes to the host GUI hierarchy as described by the

following simplified algorithm:

1) make all widgets in the host GUI hierarchy invisible

2) for each cloned widget tree in the cloned GUI hierarchy:

3) perform a breadth-first walk through all the cloned
widgets, and for each cloned widget:

4) try to find its corresponding host widget by looking
up in the component dictionary using the widget
name as the key

5) if a corresponding host widget is found:

6) iterate through the properties (including event
handlers) of the cloned widget and set them to
those of the host widget, and make it visible

7) if a corresponding host widget cannot be found:

8) add this cloned widget to the parent of the
corresponding host widget in the host GUI
hierarchy, and make it visible

Using this algorithm, WADE can apply a third-party

programmer’s changes in the cloned GUI hierarchy to the

GUI hierarchy of the host application. These changes

include adding or deleting a widget, modifying the

properties of a widget, or adding or modifying the event

handlers of a widget.

Adding widgets is handled in the 7
th

 and 8
th

 statements of

the algorithm. When the Injected Add-on Manager finds a

cloned widget not in the component dictionary, it knows it

is a new widget and adds it accordingly to the host GUI

hierarchy.

Deleting widgets is implicitly handled by initially setting

all host widgets to be invisible (1
st
 statement in algorithm),

and only making visible those found in the cloned GUI

hierarchy. The deleted widgets therefore will remain

invisible after this process, and will appear to the user as if

they had been deleted from the host application. We choose

to hide the widget instead of deleting it because removing a

widget at runtime may be risky. As a widget may have

unknown runtime dependencies, permanently removing it

may cause the application to crash. Thus, we choose a safer

approach to achieve a similar effect.

Property modification of a widget is also handled in a

simple yet effective fashion in the 5
th

 and 6
th
 statements of

the algorithm. The number of widgets in the host GUI

hierarchy is typically not exhaustive. So, instead of

expending effort to explicitly detect individual changes, we

simply reset all properties of all host widgets to the

properties of their corresponding cloned widgets, regardless

of whether the cloned widget has been modified or not.

Event handler modifications are also implicitly handled

during the property resetting process because the .NET

framework treats event handlers as part of the properties of

a widget. Changing and associating new program logic with

host widgets can be effectively applied without much

additional effort beyond implementing the desired

functionality.

As such, we successfully integrate the GUI builder and a

number of IDE features into the third-party software add-on

development process.

While WADE demonstrates a promising step towards

addressing the power and ease of use trade-off for runtime

modifications, it is important to note that WADE is not

without limitations.

Interface dynamics

WADE enables the user to perform WYSIWYG

modification of the GUI hierarchy only to the initial

application state. Many interfaces, however, are dynamic

and rely on runtime code that may alter the interface from

how it appeared at the moment it was imported into WADE

(i.e., dynamic widgets). Since the content of a widget can

change at runtime, content modification through the GUI

editor may not be applied back to the original application.

Changes to the application may also conflict with the

modifications implemented in WADE, possibly leading to

unstable modifications that may not behave as expected.

However, certain interface dynamics can still be addressed

using the WADE approach. For example, if dynamic

widgets are initialized only once upon program invocation,

it may still be possible to apply modifications using a

monitoring program that knows when to take action after

initialization.

Custom widgets

Another limitation of WADE is that the current

implementation provides limited support for modification

of custom widgets. Custom widgets often have derived

custom properties and behaviors that are not recognizable

by the GUI builder; they therefore cannot be properly

displayed in the IDE.

However, not all custom widgets are unrecognizable.

Custom widgets that derive from a standard, known widget

will be treated as the base widget. The GUI editor can thus

handle the inherited properties, but will be ignorant of any

derivative behavior and properties.

Overall, developers are advised to first get familiar with the

application behavior to clearly identify customization and

runtime interface dynamics before using WADE to perform

runtime modifications.

Security implications

Overloading at runtime can cause problems if the

replacement method violates any of the assumptions in the

original application’s design. It is thus recommended to

practice careful and defensive programming to avoid

breaking the original application logic [4].

However, as compared to toolkit modification approaches,

WADE diminishes the risk of breaking the host application.

In existing approaches, all modifications involve writing

arbitrary code. With WADE’s property editors and

templates, the surface footprint of this code is diminished,

and supported modifications can use known clean

implementations. Writing additional code will remain risky

as in Scotty and other toolkit approaches, but certain

common modifications are now much safer.

USER STUDY

In order to assess the usefulness of WADE, we performed a

user study. In terms of purpose and capabilities, WADE is

most similar to Scotty [4]. Other alternatives, while having

their own advantages, are less comparable to WADE in

terms of the functionality provided or applicability. For

example, surface-based approaches such as Façade and

Prefab lack the ability penetrate underneath the surface;

SubArtic requires use of the SubArtic toolkit to begin with.

While we expected WADE to significantly simplify add-on

development as compared to Scotty, a primary objective of

the user-study was to quantify the speed-up obtained with

WADE over Scotty while modifying third-party software,

and identify those WADE characteristics responsible for the

speed-up. To this end, we performed a controlled

experiment to assess and compare the strengths and

limitations of the Scotty and WADE approaches.

Participants

Eight participants (7 males, 1 female) ranging from 21 to 32

years old (µ = 25.5, σ = 3.34) participated in this study. All

participants were experienced computer users and

programmers.

Apparatus

The experiment was conducted using a DELL Optiplex 990

Desktop computer running on the Windows XP operating

system, with 4 GB RAM and Intel Core i7-2600-3.40 GHz

CPU. A Dell E2211H monitor, a USB optical mouse and a

standard keyboard were used as the input/output devices.

The Paint.NET interface to be modified is implemented in

C# using Microsoft Visual Studio.

As Scotty was developed for the Cocoa framework in Mac

OS whereas WADE runs on the .NET framework in

Windows, we created a Scotty-like development

environment (Scotty simulator) to support user tasks on

Windows using the following tools:

Runtime add-on manager: a tool that enables a compiled

add-on to be installed onto an existing program at runtime.

ManagedSpy: a Microsoft utility program that allows

developers to spy on an application's GUI at runtime.

Figure 5 presents a screen-shot of the program which

allows a user to discover the names, types, and properties of

the host application’s GUI components at runtime. The

ManagedSpy serves a similar functionality to the hierarchy

browser, widget picker, and object observer tools offered in

the Scotty environment. For WADE, we provided the add-

on manager and the WADE IDE based on SharpDevelop

4.2 with GUI builder as previously described.

Task and Training

Before the actual experiment, each participant was given a

tutorial demonstration and three practice tasks similar to the

experimental tasks to familiarize him/herself with the use of

the Scotty simulator and WADE. For each approach, we

provided a manual with the information necessary for the

users to complete the tasks.

Figure 5. Screenshot of the ManagedSpy tool.

The manual for the Scotty-like approach included step-by-

step instructions for (i) accessing the GUI window and

child widgets, (ii) changing widget properties using the

information retrieved by ManagedSpy, (iii) coding snippets

to hide items, (iv) coding snippets to add new widgets, and

(v) using the add-on manager to insert DLLs back to the

host application. The WADE manual included instructions

on how to (i) trigger commands to inject the add-on

manager DLL, (ii) clone the host application, (iii) write

GUI modifications to a DLL and (iv) re-inject this DLL

back to the host program.

Note that the instructions we provided made code-based

modifications (as with the Scotty simulator) much easier,

because in real world scenarios, the methodology for

achieving GUI modifications is not obvious and must be

figured out in a trial and error fashion. However, to

facilitate participants’ completion of the tasks, we provided

all the requisite information in the user manual.

The tasks to be completed using (a) our Scotty simulator

and (b) WADE in the experiment are described below:

 Personalized reconfiguration: In the first task, users

were required to rename two menu items, hide three

menu items, change the font size and style of the main

menu bar, and change the representational picture for a

widget.

 Adding functionality via add-ons: For the second task,

users were required to add a new button called “Undo all”

on the icon bar (as in Figure 1). Once the “Undo all”

button is clicked, it would undo all user modifications for

a particular session.

Experimental Design

We used a within-participants design in which all

participants were asked to perform all tasks using both

approaches. Participants were randomly assigned to two

groups of four participants each. Half of the participants

performed the two tasks with the Scotty simulator first,

followed by WADE, while the other half performed the two

tasks in the reverse order. Each participant performed the

entire experiment in one sitting lasting 1-2 hours, with

optional breaks between tasks.

In summary, the design was as follows (excluding practice

tasks): 8 subjects × 2 coding approaches (Scotty-simulator

vs. WADE) × 2 tasks (GUI reconfiguration, add-on

development) = 32 tasks in total. Comparative factors were

time spent on the tasks, whether or not the task was

successful, and participants' subjective preferences in their

post-experiment questionnaire.

Results

The user-study results confirmed that software modification

is much easier with WADE than with Scotty.

Accuracy: Seven participants finished all tasks, while one

participant only finished the first task using both

approaches. Therefore, from the task completion point of

view, there was no difference between the two approaches.

However, there was a difference in the number of attempts

it took for participants to finish each task. An attempt

denotes each instance a participant believed the task was

complete, and tried to execute the modifications he/she had

made. Errors in program execution, therefore, resulted in

multiple attempts. On average, participants required 1.13

attempts to complete a task using WADE, and 1.75

attempts with the Scotty-like approach. A paired t-test

comparison between the two approaches revealed that this

difference is marginally significant (t7 = 4.07, p = .083).

This result suggests that users are likely to commit fewer

mistakes during interface modification using WADE than

Scotty.

Time to task completion: We then conducted a 2x2

repeated measures ANOVA on the task-completion times

with the approach type (WADE/Scotty) and task type

(reconfiguration/add-on integration) as the relevant factors.

Figure 6 presents the results. As expected, we found a

significant main effect of the approach used (F1,7 = 31.41,

p<0.01) on the task-completion time, which implies that on

average, users completed the two tasks significantly (about

2.4 times) faster using WADE (264.4 s) than with the

Scotty-simulator (639 s).

Figure 6: Comparison of task completion times for WADE

and Scotty.

Qualitative comparison: After the experiment, participants

were asked to rate various aspects of the two approaches on

a 5-point Likert scale. In all, they answered four questions

concerning usefulness (how useful was the software

modification tool?), user productivity (how much did this

tool improve your productivity?), learnability (how easy

was it to learn the steps involved in this approach?) and

overall satisfaction. WADE received a minimum average

score of 4.75 on all counts. On the other hand, the Scotty-

like approach received a highest score of 3.25 for

usefulness, and a lowest score of 2.25 on user productivity.

Discussion

Factors contributing to WADE’s performance advantage

Results of the user study clearly demonstrate the advantages

of using WADE’s integrated approach for reconfiguration

and add-on development tasks. The performance gain with

WADE arose due to a number of factors as enumerated

below.

1) The WYSIWIG GUI editor allows participants to more

directly interact with and manipulate widgets and their

properties. This consequently saves time and effort required

to look up the GUI widget hierarchy for appropriate names

and properties before applying any changes, as indicated by

our participants: “WADE enables direct manipulation which

is easy, faster and intuitive. (P1, P5)”.

2) Fewer task completion attempts using WADE can be

attributed to the fact that direct interface manipulation

essentially involves recognition of widgets and their

properties, while coding relies on sense making and recall.

It is easier to make mistakes using the pure coding

approach, as indicated by the higher average number of

attempts mentioned earlier.

3) Although coding is necessary to add/modify GUI

functionality, the WADE IDE provides scaffolding in the

form of event handler templates to aid the development

process. “The event handler template makes coding easier”

(P1).

4) In the Scotty-like approach, the sense-making process

and coding for the add-ons are separate tasks handled using

different tools and applications, causing additional

overhead both cognitively, in terms of remembering and

linking the information, as well as physically, in terms of

operating and interacting with multiple, different tools. In

WADE, the IDE provides an integrated environment for

coding, which can reduce the time spent on managing and

interpreting the code. As indicated by P4: “Switching back

and forth between ManagedSpy and IDE is tedious and

frustrating”.

5) Finally, as all necessary instructions required for

modifying UI components using the Scotty simulator,

typically unavailable in the real world, were provided to

users, latency involved in discovering the correct

modification commands is not accounted for in this study.

Therefore, one can expect WADE to enable an even larger

performance gain over toolkit-based deep approaches such

as Scotty in real-world scenarios.

In summary, the advantages of WADE over Scotty-like

approaches are (1) Direct and easy location-cum-

manipulation of target widgets due to the WYSIWYG

editor; (2) Fewer chances of committing errors during

interface modification as the UI modification process is

simplified by the WADE IDE; (3) Scaffolding provided by

WADE for incorporating add-ons, in the form of event

handlers, enables easier and faster addition/modification of

functionality; (4) Facilitation provided by the IDE

significantly reduces switching time between different

applications and tools; (5) Less search time required to find

the correct statements to manipulate GUI properties.

While the user study conclusions are not surprising, as

WYSIWYG GUI editing is easier than explicit code

hacking, it demonstrates that an IDE greatly simplifies UI

modification as compared to a Scotty-like approach even

for relatively experienced programmers. All of our

participants mentioned that they are less likely to use the

Scotty simulator for implementing third-party add-ons. On

the other hand, WADE significantly lowers the knowledge

barrier for developing third-party GUI add-ons. Six out of

eight participants indicated that they would use WADE to

write add-ons for third-party software.

Limits of the GUI builder metaphor

While many of the modifications were easier to perform

using a GUI builder, participants also found it less

convenient when dealing with repetitive or looping tasks.

For example, if a participant is asked to change 6 out of 7

labels to a different font type, it is easier to use a loop than

manually perform the changes multiple times. The GUI

metaphor delivers important benefits to learnability,

memorability, and error prevention, but it can be inefficient

for frequent users [8]. In such cases, a command language

may be preferred as it allows simpler programming of

similar and repetitive tasks, but at the cost of requiring the

user to learn command names and syntax, putting more

demands on the user’s memory and increasing the chance

of errors. Combining both approaches may mitigate this

trade-off. For example, Inky [8] allows for sloppy

command input and provides rich visual feedback to reduce

the cost on user’s memory, making it less error-prone.

Sikuli [1], on the other hand, enables inclusion of visual

images in the command to make it easier and more intuitive

to refer to graphical elements. To some extent, WADE

follows the same approach by introducing the GUI builder

into Scotty’s command line programming environment to

improve the ease of use and robustness of the third party

add-on development. However, our user study has revealed

that there is room for improvement to better combine the

advantages of the GUI builder and command line

programming to further improve the efficiency and ease of

use of third party add-on development.

EXTENSION TO OTHER FRAMEWORKS & PLATFORMS

Although WADE is currently only implemented for the

Windows Forms framework, its approach can be

generalized to most other frameworks and platforms.

In general, the WADE approach involves the following

three framework-dependent steps:

1) Create an injected add-on manager that can enter the

runtime process to manage add-ons, retrieve the GUI

hierarchy information, and apply changes back to the host

application.

2) Identify a suitable IDE that has GUI builder support and

allows add-on integration.

3) Implement an add-on for the IDE that can import the

GUI hierarchy from the host application, display it in the

GUI builder, and compile the changes to a DLL add-on.

Choosing runtime code intervention method

The key to step 1 is runtime code observation and

intervention. On Windows, we use DLL injection. (A

solution for Mac OS X is described in [4].) While there are

several ways to achieve DLL injection in Windows, we

present two primary methods below: a) registry key-based

injection and b) system hook-based injection [14].

Registry key-based injection works by adding a new DLL

to a registry AppInit key. In Windows Vista and Windows

7, this feature is disabled by default, but can be achieved

through code signing. Whenever a new application loads,

the DLL will be loaded into the same process as well.

System hook-based injection works by using a separate

background monitoring application that detects new

programs and uses methods such as SetWindowsHookEx.

While more cumbersome and complex, this approach

injects the DLL at the deeper thread level and can be used

by all versions of Windows.

Choosing which method to use depends on the frameworks

used. Some (e.g., Windows Forms) allow modification of

the UI thread in the process level. Other frameworks (e.g.,

QT [11]) do not allow such modifications; therefore, thread

level intervention becomes necessary. Once the appropriate

runtime code observation and intervention method is

identified for a particular framework and platform, the

remaining effort mostly concerns the work of writing the

injected add-on manager for the framework.

Identifying IDEs with GUI builder and add-on support

The second step is to choose a suitable IDE that supports

GUI editing for add-on development. To shorten the

development time, it is recommended that an existing IDE

be chosen for a particular framework to work.

As WYSIWYG GUI editing becomes more popular, it is

not difficult to identify such IDEs for many of the modern

frameworks. For example, in the Java platform, NetBeans

and Eclipse are two such IDEs; Qt Creator [10] is an

example that satisfies these requirements for the popular Qt

framework; XCode is an IDE that is suitable for the Mac

OS Cocoa framework. We implemented the WADE

prototype for both the Visual Studio and Sharp Develop

IDEs.

Developing an add-on for importing and presenting GUI

Once a suitable IDE is identified, the steps mentioned in the

implementation section can be followed to create an add-on

that can import and present the host GUI hierarchy in the

IDE’s GUI builder. The exact process of implementing add-

ons may be complex and depends on the details of the

particular environment. However, it is technically feasible

and the approach we have proposed in the implementation

section can serve as a useful guideline for the development

process.

CONCLUSIONS AND FUTURE WORK

The WADE IDE is shown to be useful for realizing a

variety of GUI-based modifications in existing software.

The presented user study confirms that while these

modifications are achievable employing alternative

approaches, WADE significantly lowers the requisite

knowledge and effort barriers. Future work involves

extending the current implementation to other OS

platforms, widening WADE support to handle custom and

dynamic widgets, and potentially enabling debugging

capabilities inside the WADE IDE for add-on development.

ACKNOWLEDGMENT

We thank the AC and anonymous reviewers for their

constructive comments and feedback. We thank members

of the NUS-HCI Lab for their support. This research is

supported by National University of Singapore Academic

Research Fund WBS R-252-000-414-101 and by A*STAR,

Singapore, under the Human Sixth Sense Program (HSSP)

grant.

REFERENCES

1. Besacier, G., and Vernier, F. Toward user interface

virtualization: legacy applications and innovative

interaction systems. In EICS, 157–166, 2009.

2. Dixon, M., and Fogarty, J. Prefab: implementing

advanced behaviors using pixel-based reverse

engineering of interface structure. In CHI, 1525-1534,

2010.

3. Dixon, M., Leventhal, D., and Fogarty, J. Content and

hierarchy in pixel-based methods for reverse

engineering interface structure. In CHI, 969–978, 2011.

4. Eagan, J.R., Beaudouin-Lafon, M., and Mackay, W. E.

Cracking the cocoa nut: user interface programming at

runtime. In UIST, 225–234, 2011.

5. Edwards, W. K., Hudson, S. E., Marinacci, J.,

Rodenstein, R., Rodriguez, T., and Smith, I. Systematic

output modification in a 2d user interface toolkit. In

UIST, 151–158, 1997.

6. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,

Rector, K., and Kwan, I. End-user debugging strategies:

A sensemaking perspective. In TOCHI, 19(1):5:1–5:28,

May 2012.

7. Mackay, W.E. Triggers and barriers to customizing

software. In CHI, 153–160, 1991.

8. Miller, R.C., Chou, V.H., Bernstein, M., Little, G.,

Kleek. M.V., Karger, D., and schraefel. M. 2008. Inky: a

sloppy command line for the web with rich visual

feedback. In UIST (2008), 131-140.

9. Pirolli, P. and Card, S. The sense-making process and

leverage points for analyst technology as identified

through cognitive task analysis. In ICIA, 2005.

10. Qt Creator. http://gitorious.org/qt-creator/qt-creator

11. Qt framework. http://qt-project.org/

12. Robinson, M. Design for unanticipated use. In ECSCW,

187–202, 1993.

13. Shewmaker, J. Analyzing DLL Injection,

http://www.bluenotch.com/files/Shewmaker-DLL-

Injection.pdf.

14. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel,

N. User Interface Facades: Towards Fully Adaptable

User Interfaces. In UIST, 309–318, 2006.

15. Tan, D.S., Meyers, B., and Czerwinski, M. Wincuts:

manipulating arbitrary window regions for more

effective use of screen space. In CHI extended abstracts,

1525-1528, 2004.

16. WineHQ. http://www.winehq.org/.

17. Yeh, T., Chang, T., and Miller, R. Sikuli: using gui

screenshots for search and automation. In UIST (2003),

183-192, 20

http://qt-project.org/
http://www.bluenotch.com/files/Shewmaker-DLL-Injection.pdf
http://www.bluenotch.com/files/Shewmaker-DLL-Injection.pdf
http://www.winehq.org/

