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Abstract—Global Positioning System (GPS) derived precip-
itable water vapor (PWV) is extensively being used in atmo-
spheric remote sensing for applications like rainfall prediction.
Many applications require PWV values with good resolution and
without any missing values. In this paper, we implement an
exponential smoothing method to accurately predict the missing
PWV values. The method shows good performance in terms of
capturing the seasonal variability of PWV values. We report a
root mean square error of 0.1 mm for a lead time of 15 minutes,
using past data of 30 hours measured at 5-minute intervals.

I. INTRODUCTION

Precipitable water vapor (PWV) values are an indicator
of moisture content in the atmosphere and exhibit good
correlation with rainfall events. There is a growing trend of
using the PWV values derived from Global Positioning System
(GPS) in detection and/or prediction of a rainfall event [1], [2].
There are algorithms reported in the literature which predict
rainfall events with lead times starting from 5 minutes up to
6 hours. The prediction window is affected by the resolution
and availability of the GPS-PWV data. Generally, GPS-PWV
values can be derived with a resolution of 5 minutes [3].
However, there are missing PWV values at certain hours. In
this paper, we address this issue of missing PWV values, by
proposing a method to predict the PWV values based on the
past PWV values.

II. GPS-BASED PWV MEASUREMENTS

A. Computing PWV

In this section, we briefly mention the methods to calculate
PWV values from GPS measurements. The GPS signals are
effected by two main delays in the troposphere layer of the
atmosphere. They are Zenith Hydrostatic Delay (ZHD) and
Zenith Wet Delay (ZWD). Out of these two delays, ZWD is
due to the water vapor content of the atmosphere. Therefore,
PWV is derived from the ZWD as shown by Eqs. (1,2) [4].

(1)PWV = PI · ZWD

PI = [−sgn(La) · 1.7 · 10−5|La|hfac − 0.0001]

· cos 2π(DoY − 28)

365.25
+ 0.165− 1.7 · 10−5|La|1.65 + f

(2)
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where La is the latitude, DoY is day-of-year, hfac = 1.48
for stations from the northern hemisphere and 1.25 for the
southern hemisphere. f = −2.38 · 10−6H , where H is the
station height, which can be ignored for stations below 1000m
in altitude. In this paper, the ZWD values are processed using
the GIPSY OASIS software for a tropical IGS GPS station,
ID: NTUS (1.30◦N, 103.68◦E), with a temporal resolution of
5 minutes.

B. Predicting PWV Values

Suppose p1, p2, . . . , pt indicate the PWV values measured
up to time t. We use triple exponential smoothing (TES) [5]
to model the seasonal variations of the PWV values. The
principal idea behind triple exponential smoothing is to apply
exponential weights on the observations, with more weightage
on recent observations. The TES weights are assigned on the
level, trend and seasonal components of the time series. We
use the 5 minute interval PWV values in the form of time
series data, and use only the historical PWV values to predict
the future PWV values after time t. The future PWV values
pt+m are modelled as:

(3)pt+m = st +mbt + ct−L+1+(m−1) mod L,

where L is the length of a season, st is the smoothed version
of the constant part of observation, bt is the best estimate
of the linear trend, and ct is the series of seasonal correc-
tions. We benchmark our proposed method with two popular
forecasting techniques – persistence model and average model.
The persistence model assumes that the forecasted PWV value
remains constant as the latest PWV value, and is modelled as
pt+m = pt. The average model works under the assumption
that the future PWV values is the same as the average of the
historical PWV values. It is modelled as pt+m = 1

t

∑
t pt.

III. RESULTS & DISCUSSIONS

In this section, we provide a detailed analysis 1 of the
forecasting of PWV values using exponential smoothing. The
PWV values for the year 2010 are computed for our chosen
station ID NTUS.

1The code of all simulations in this paper is available online at https://
github.com/Soumyabrata/predicting-pwv.

https://github.com/Soumyabrata/predicting-pwv
https://github.com/Soumyabrata/predicting-pwv
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Fig. 1: Sample illustrations of the prediction of PWV values, along with the ground-truth values. We observe that the trend
and seasonality of the future PWV values are captured with a good degree of accuracy.

A. Qualitative Evaluation

Our proposed method can efficiently capture the seasonal
variation of the PWV values, and provide a foundation for
short- and long- term forecasting. Figure 1 shows sample
illustrations of the accuracy of PWV prediction. We use
historical data of 30 hours to predict the future PWV values.
We observe that our proposed technique can capture the trend
of the future PWV values accurately.

B. Quantitative Evaluation

We use the Root Mean Square Error (RMSE) between the
measured and predicted PWV values, in order to provide an
objective evaluation of our proposed method. The performance
of the prediction is dependent on two primary factors – the
amount of historical data that is considered for training the
time series model, and the length of lead times to the forecast
data. We use a varying range of historical data and lead times,
in order to understand the impact of these variables on the
forecasting performance. Figure 2 shows the impact of these
two independent variables.
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Fig. 2: Distribution of RMSE (mm) for a range of lead times
and historical data.

The corresponding error is color coded for a particular value
of historical data and lead time. We repeat this experiment 10
times for a chosen value of the two variables, in order to
reduce any sampling bias. We observe that the error gradually
increases with a lower value of historical data, and larger value
of lead time. This makes sense as high amount of training data

is required to model the seasonality properly, and the error
accumulates as we predict higher lead times.

As a final comparison, we benchmark our proposed method
with two popular baseline models, namely persistence and
average. Table I reports the average RMSE values (in mm)
of the different methods in our dataset. We observe that the
average model performs very poorly. Our proposed method
shows a consistent improvement over the persistence model.
This is due to the fact that PWV values remain fairly constant
for shorter lead times. The forecasting performance can be
further improved by incorporating other sensor data in addition
to historical PWV values.

TABLE I: RMSE (mm) for varying lead times.

Lead Time Proposed Persistence Average
5 min 0.061 0.086 10.433

10 min 0.078 0.144 9.525
15 min 0.101 0.259 7.028

IV. CONCLUSION & FUTURE WORK

This paper applies an exponential smoothing method for
predicting future PWV values using past PWV data. The
exponential method shows better performance compared to
the two other techniques. The RMSE values increase with
longer lead time and less historical data. In future work, other
meteorological data [6] will be included for a better prediction
of PWV values.
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