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Abstract—This paper presents a new multimodal database
and the associated results for characterization of affect (valence,
arousal and dominance) using the Magnetoencephalogram (MEG)
brain signals and peripheral physiological signals (horizontal
EOG, ECG, trapezius EMG). We attempt single-trial classifica-
tion of affect in movie and music video clips employing emotional
responses extracted from eighteen participants. The main findings
of this study are that: (i) the MEG signal effectively encodes
affective viewer responses, (ii) clip arousal is better predicted by
MEG, while peripheral physiological signals are more effective
for predicting valence and (iii) prediction performance is better
for movie clips as compared to music video clips.

I. INTRODUCTION

Representing, measuring and predicting emotion in multi-
media content adds significant value to multimedia systems [1].
Nevertheless, only a handful of works have attempted to
categorize multimedia content based on the emotion(s) they
evoke, and they typically involve (i) analysis of the content [8]
with simple models scarcely reflective of human perception, or
(ii) recognition of the viewer’s facial expressions [11], which
denote a subjective/circumstantial manifestation of the true
affect, or (iii) based on physiological responses [15], which
capture only a limited aspect of human emotion. Recently,
cognitive-based approaches employing means such as fMRI
or EEG to map brain signals with the induced affect [9], [10],
[13], [22] have gained in popularity, but the experimental set-
up used by these methods only allows for the use of simple,
well-focused signals or time-limited, complex stimuli such as
movie clips.

In this paper, we present the first work to perform single-
trial affect decoding using the Magnetoencephalogram (MEG)
signal, which is an emerging technology for capturing func-
tional brain activity. Unlike fMRI, MEG responses can be ac-
quired with the subject seated comfortably in a quiet, shielded
room and different from EEG, MEG does not require the use
of gel for positioning dozens of electrodes. The MEG device
allows for naturalistic user reaction as the user is seated on an
armchair, having little physical contact with the sensing coil.
The advantages of the MEG setup are that (i) the acquired
physiological signals are more meaningful, since they are not
affected by psychological stressors, and (ii) MEG responses
can be recorded with higher spatial/temporal resolution, as
compared to EEG and fMRI.

The non-invasiveness of MEG enables reliable acquisition
of users’ brain responses over longer time durations, and so it
is possible to use full-length movies for analysis– as a first step,

we present preliminary classification results on a large dataset
of 40 music videos and 36 movie clips in this paper. In addition
to MEG, we also use complementary physiological signals in
the form of electrooculogram (EOG), electrocardiogram (EEG)
and trapezium electromyogram (EMG) for characterizing af-
fect, making our approach user-centric and multi-modal. This
MEG-based affect sensing approach can be used to generate
affective curves for movie content as in [8], and therefore, a
user-centered framework, more informative and reliable than
a content-based one, can be used to drive important consumer
applications such as personalization of user-delivered content
and automated highlights compilation in the near future.

In summary, this paper makes the following contributions:
(1) It represents the first work to employ single-trial MEG
decoding for affect characterization, and classification results
are presented for a dataset of 40 music video clips and 36
movie clips, which is one of the largest reported in affec-
tive computing literature. Also, given the large variability in
subjects’ affective ratings and brain activations, some studies
(e.g., [13]) attempt classification with participant-specific stim-
ulus labels. Instead, given that our final objective is affective
video tagging which is stimulus-specific rather than subject-
specific, our classification assumes a single label per stimulus,
as determined from the mean affective rating given by par-
ticipants. (2) We also compare the suitability of two stimuli
types (music and movie clips) for studying affect. While the
various studies reported in literature have used a variety of
stimuli (images, music videos and movies) to study affect, no
comparisons to determine which stimulus is better suited for
affective analysis have been reported to our knowledge. This
work represents a first step in that direction.

The paper is organized as follows: section II overviews
related affective studies. The experimental protocol employed
for recording viewers’ affective responses, and the feature ex-
traction methodology are respectively described in sections III
and IV respectively. Experimental results are discussed in
section V, while conclusions are stated in section VI.

II. RELATED WORK

While affective content creators intend to convey a certain
emotion (or a set of emotions) through the created stimulus,
the actual emotion induced upon perceiving the stimulus
is influenced by a number of psychological and contextual
factors, and can therefore be highly subjective. Consequently,
correlating the observed emotional response with the expected
response is a non-trivial problem which is typically simplified



in practice employing the following ideas: (1) Most affective
studies assume that the entire gamut of human emotions can be
represented as a set of points on the valence-arousal1 plane as
demonstrated by Greenwald et al. [6], and (2) To largely ensure
that the elicited and expected emotions are consistent, the
presentation stimuli are carefully selected based on previous
studies, or based on ’ground truth’ valance-arousal ratings
compiled from a large population that evaluates the stimuli
prior to the actual experiment.

Emotional states have been found to produce specific types
of physiological responses- e.g., excitement is associated with
increased heart-beat and respiration rates, and this correlation
is exploited in a number of physiology-based affect studies.
Heart-rate, skin temperature and conductance level, blood pres-
sure and facial EMG are recorded as subjects view affective
imagery in [20]. Their experiments indicate that the responses
for anger and fear are uniquely different from responses to
neutral images.

Among physiology-based affective studies with video stim-
uli, Lisetti and Nasoz [15] employ a two-pronged approach to
elicit frustration along with other emotions from 29 partici-
pants. They use movie clips proposed by [7] to evoke sadness,
anger, amusement, fear and surprise, and induce frustration by
asking subjects to solve difficult mathematical questions with-
out pencil and paper. GSR, heart rate, temperature, EMG and
heat flow responses are recorded using an armband, and over
80% accuracy is obtained in classifying the aforementioned
emotions using extracted features.

Employing physiological signals for emotion recognition
from audio music clips is described by Kim and André
in [12]. In a study conducted with three subjects, the authors
employ four bio-channel sensors to measure electromyogram,
electrocardiogram, skin conductivity and respiration changes
and correlate them with the subjects’ emotional state. Using an
emotion-specific multilevel dichotomous classification scheme,
the authors achieve 95% and 70% recognition accuracy for
subject-dependent and independent classification for the four
(high/low valence/arousal) musical emotions.

In the DEAP dataset, Koelstra et al. [13] record EEG, GSR,
blood volume pressure, respiration rate, skin temperature and
Electrooculogram (EOG) patterns as 32 viewers are presented
with 40 one-minute music video segments. These responses
are correlated with arousal, valence, liking and dominance
ratings provided by participants during the experiment. A mean
accuracy of over 60% is obtained for single-trial binary clas-
sification with EEG and peripheral physiological signals. The
MAHNOB-HCI multimodal database compiled by Soleymani
et al. [22] contains face videos, audio and physiological signals
as well as eye-gaze data of 27 participants who watched 20
emotional movie/online clips in one experiment, and 28 images
and 14 short videos in another. Their database facilitates
affect computation using single or multiple modalities and
determination of the most suitable modalities.

1Valence indicates the type of emotion induced by the stimulus in the viewer
(e.g., pleasant or unpleasant), while arousal denotes the intensity of emotion
(e.g., exciting or boring) [8].

III. EXPERIMENTAL PROTOCOL AND DATA ANALYSIS

In this section, we present a brief description of (a) MEG
and peripheral physiological signals employed in the study
and (b) stimuli selection procedure before detailing the (c)
experimental set-up and protocol, and (d) the analysis of self-
assessment ratings.

A. MEG and peripheral physiology signals

To collect users’ affective responses we employed (i) mag-
netoencephalogram (MEG), (ii) horizontal electrooculogram
(hEOG), (iii) electrocardiogram (ECG), and (iv) trapezius
electromyogram (Trapezius EMG) signals that are described
below:

Magnetoencephalogram: MEG is a technology that enables
non-invasive recording of brain activity and is based on
SQUIDS (Super-conducting Quantum Interference Devices),
which enables recording of very low magnetic fields. Magnetic
fields produced by the human brain are of the order of pico-
Tesla and since sensors are really sensitive to noise, the MEG
equipment is located in a shielded room insulated from other
electrical/metallic installations. A multiple coils configuration
enables measurement of magnetic fields induced by tangential
currents, and thus, brain activity in the sulci of the cortex can
be recorded.

Horizontal electrooculogram: Electrooculography is the
measurement of eye activities (i.e., movements, fixations and
blinks). In this study, we used an horizontal EOG which
reflects mostly the horizontal eye movement of users. We
placed two electrodes on the left and right side of the users’
face close to their eyes. Zygomatic muscle activities produce
high frequency components in the bipolar EOG signal, and
hence the EOG signal captures general information about facial
activation. In comparison to other facial characteristics, EOG
is shown to be more effective for measuring affect across
different cultures [24].

Electrocardiogram: Electrocardiogram signal is well
known for its relevance in emotion recognition studies [22],
[12]. ECG signals were recorded using three sensors attached
on the participants’ body. Two of the electrodes were placed
on the wrist pulses and a reference was placed on a boney part
of the arm (ulna bone). This setup allows for precise detection
of heart beats, and consequently, accurate computation of heart
rate (HR) and heart rate variability (HRV).

Trapezius electromyogram: Different people exhibit vary-
ing movement patterns while experiencing emotions. However,
some movements are involuntary and not controlled by the
person– e.g., nervous twitches produced when someone is
becoming anxious, nervous, or excitable. Trapezius EMG is
shown to correlate effectively with users’ stress level in [23].

B. Stimuli selection procedure

Many affective studies are conducted with image stimuli,
and there exist standard affective image datasets (e.g. [14])
for researchers to evaluate their findings. However, in spite
of studies confirming that reliable emotion elicitation and
characterization is feasible with complex video stimuli such
as movies [9], there exist few affective video datasets. An af-
fective music video dataset comprising 40 one-minute affective



Fig. 1. Timeline for experimental protocol. Fig. 2. Mean self-assessment AV ratings for music clips (left) and movie
clips (right).

highlights has recently been presented in [13]. Our endeavor
was to create a large-sized affective movie dataset along
those lines since: (1) Temporal context, whose importance in
emotion perception has been acknowledged [3], is conveyed
effectively by both audio and visual content in movies, whereas
context in music videos is predominantly conveyed by the
audio, and supplemented by visuals; (2) Movies can effectively
elicit a larger range of emotions as compared to music videos.

To this end, we initially compiled a set of 52 Hollywood
movie clips, most of which are suggested as suitable for affec-
tive studies in [7], [4]. These clips were shown to 42 subjects,
who self-assessed their emotional state to provide arousal and
valence (AV) ratings as well as the most appropriate emotion
tag for each movie clip. These AV ratings were considered as
’ground truth’ ratings in our study. We finally chose 36 movie
clips which obtained the most consistent and representative
scores and were uniformly distributed over the arousal–valence
plane. These clips were 51s–128s long (µ = 80, σ = 20),
and were associated with diverse emotional tags such as
funny, amusing, exciting, sad, disgusting and angering. To
investigate whether MEG-based affect recognition is effective
across stimuli types, we also used the 40 one-minute music
video highlights suggested in [13] in our experiments.

C. Experimental set-up
1) Materials and set-up: All MEG recordings were per-

formed in a shielded room with controlled illumination. Due
to the sensitivity of the MEG equipment, all other devices
used for data acquisition were placed in an adjacent room,
and were controlled by the experimenter. Two PCs were used,
one (Intel i7, 8 GB RAM) for stimulus presentation and
the other for MEG data recording. The stimulus presenta-
tion protocol was developed using MATLAB’s Psychtoolbox
(http://psychtoolbox.org/) along with some functions adapted
from the ASF stimulus presentation framework [19]. Also,
synchronization markers were sent from the stimulus presenter
PC to the MEG recorder at the beginning and end of each
stimulus display. All stimuli were shown at a resolution of
1024 × 768 pixels and at a screen refresh rate of 60 Hz,
and this display was projected onto a screen placed about
a meter in front of the subject inside the MEG acquisition
room. All music/movie clips were played at 20 frames/second,
upon normalizing the audio volume to have a maximum
power amplitude of 1. Also, participants were provided with
a microphone to communicate with the experimenters. The
Neuromag device, which outputs 306 channels (corresponding
to 102 magnetometers and 204 gradiometers) with a sampling
frequency of 1 KHz, is used for recording MEG responses.

2) Protocol: 18 university graduate students (8 male, 10
female, age range 27.3 ± 4.3) participated in the experiments.
Data acquisition for each participant was spread over two
sessions– movie clips were presented in one session, while

music videos were presented in the other. The order of pre-
sentation of the music/movie clips was counterbalanced across
subjects. During each session, the music/movie clips were
shown in random order, such that two clips of similar valence
and arousal did not follow one another. To avoid fatigue, each
acquisition session was split into two halves (with 20 music
or 18 movie clips shown in each half) and lasted for one hour.
We recorded 1 minute of resting state brain activity before and
after each session (see Fig.1 for protocol timeline).

Prior to each recording session, the participant was briefed
about the experiment and was asked to remove any metallic ob-
jects he/she was wearing before entering the MEG room- this
was mandatory as metals would interfere with the magnetic
field. Then, a practice trial was conducted so that the subject
could acquaint him/herself with the protocol. Each acquisition
session involved a series of trials. During each trial, a fixation
cross was first shown for 4 seconds to prepare the viewer and to
gauge his/her rest-state response. Upon stimulus presentation,
the subject conveyed the emotion elicited in him/her by the
stimulus to the experimenter through the microphone. Ratings
were acquired for (i) arousal (’How intense is your emotional
feeling on watching the clip?’) on a scale of 0 (very calm) to
4 (very excited), (ii) valence (’How do you feel after watching
this clip?’) on a scale of -2 (very unpleasant) to 2 (very
pleasant), (iii) Dominance (’How much are you in control of
your emotions?’) on a scale of 0 (in full control of emotions)
to 4 (overwhelmed with emotions). A maximum of 15 seconds
was available to the participant to convey each rating.

D. Self- assessment ratings– Music vs movie clips

In this section, we compare the valence-arousal ratings
provided by participants for music and movie clips. Participant
ratings are (i) a conscious reflection of their emotional state
upon viewing the stimuli, and therefore, should be significantly
correlated with their physiological responses (ii) ultimately
used for valence and arousal classification, and the variance
in ratings can provide vital cues regarding the best case
classification results and (iii) also indicative of whether the
presented stimuli can effectively evoke the expected emotional
responses from viewers.

Fig.2 presents plots of the mean AV ratings obtained from
18 participants for the music and movie clips respectively. The
blue, magenta, black and red colors are used to respectively
denote high arousal high valence (HAHV), low arousal high
valence (LAHV), low arousal low valence (LALV) and high
arousal low valence (HALV) stimuli as per the ground-truth
ratings. A C-shape is observed for both movie and music clips,
consistent with previous studies [14], [13]– it is attributed
to the difficulty in evoking low arousal but strong valence
responses. This phenomenon is particularly obvious in the case
of music clips, where there is considerable overlap between the



four clusters. For movie clips however, overlapping of clusters
is observed only along the arousal dimension.

To further investigate this observation, we performed a
Wilcoxon signed-rank test as in [13] to check if high and
low arousal stimuli induced different valence ratings. The test
showed that the valence ratings for high and low arousal
movie stimuli were significantly different (p <0.005 in both
cases). While this observation also holds for music clips, the
valence ratings for low arousal stimuli vary less significantly
as compared to movie clips (p <0.005 for high arousal music
clips and p <0.01 for low arousal clips). Therefore, valence-
arousal distinction is clearer for movie clips as compared to
music clips.

Noting that significant inter-subject differences could have
influenced the observed distribution of the mean ratings,
we also performed a second experiment. Assuming that the
ground-truth AV ratings were provided by an ‘ideal’ annotator,
we compared the mean agreement between the participant
and ground truth ratings using the Cohen’s Kappa measure.
To this end, we thresholded each user’s ratings based on
their mean rating, to assign a stimulus to either high/low
valence/arousal. Then, we computed κ between the ground-
truth and these labels. The mean κ over all subjects for
the music-valence, music-arousal, movie-valence and movie-
arousal were found to be 0.5111, 0.1728, 0.6574 and 0.2917
respectively. This again demonstrates that inter-rater agreement
is higher for movie stimuli, especially for valence, between
the two subject populations that provided the ground truth and
performed the experiment. Therefore, movie stimuli are found
to evoke similar emotions across viewers more effectively as
compared to music videos. Likewise, we also obtain better
affect classification with physiological features for movies
as detailed in section V. The next section details the steps
involved in the extraction of MEG and peripheral physiology
features.

IV. DATA ANALYSIS

This section describes the procedure for (i) data preprocess-
ing and feature extraction, (ii) classification. Compiled user
ratings and affective response signals for both music and movie
stimuli are processed in an identical manner.

A. Preprocessing the MEG data and feature extraction

The MEG data preprocessing consists of three main steps
that are handled using the MATLAB Fieldtrip toolbox [17]:

Trial Segmentation: Participant responses corresponding to
each trial are extracted by segmenting the MEG signal from
4 second prior to stimulus presentation (pre-stimulus) to the
end of stimulus presentation. In this way, for each subject, we
extract 36 and 40 trials for the movie clips and music videos
respectively.
Frequency domain filtering: After downsampling the sig-
nal to 300 Hz, low-pass and high-pass filtering with cut-off
frequencies of 95 Hz and 1 Hz respectively are performed.
Applying the high-pass filter, low frequency noise in the MEG
signal generated by moving vehicles is removed. Conversely,
the low-pass filter removes some high frequency artifacts
generated by muscle activities (between 110 Hz- 150 Hz).
Channel correction: Dead and bad channels are removed from
the MEG data and replaced with interpolated values. Dead

channels have zero value over time, while bad channels are
outliers with respect to metrics such as signal variance and z-
value of signal power over time. To preserve the consistency
of MEG data over each trial and subject, removed channels
are replaced with signals obtained from the interpolation of
neighboring channels.

Upon segmenting the MEG response for each trial, the most
informative content for affect classification needs to be ex-
tracted. In MEG studies, the spectral power of certain frequen-
cies is the popularly used feature. There are several methods
for computing spectral power of signals like Hanning tapers,
multitapers and wavelet. Multitapers and wavelet are typically
used in order to achieve a better control over the frequency
smoothing. In these methods, high frequency smoothing has
been found to be principally beneficial when dealing with
brain signals above 30 Hz [16], [18]. Therefore, we use the
variable-width wavelet method to transform our signal to the
time-frequency domain for spectral power analysis.

We use a time-step of 1 second for temporal processing of
the signal corresponding to each trial and a frequency step of 1
Hz to scan through a frequency range of 1-45 Hz. We linearly
vary the wavelet width with frequency, increasing from 4 for
lower frequencies to 8 for higher frequencies. Upon applying a
wavelet transform on the MEG data, we perform the following
steps: (a) We use a standard Fieldtrip function for combining
the two planar gradiometers’ spectral power for each sensor.
(b) In order to better elucidate the MEG response dynamics
following stimulus presentation, each trial power is divided
by the baseline power between 2 and 1 second pre-stimulus
interval. (c) To increase dynamic range of the spectral power,
the time-frequency output is logarithm transformed.

Per subject and per movie clip, the output of the above
time-frequency spectral power analysis is a 3-dimensional
matrix with the following dimensions: synthetic information of
102 gradiometers × clip length time points × 45 frequencies.
Similarly, for each of the 40 music clips, the output dimensions
are 102×60×45.

1) MEG 3D DCT features: According to Ahmed et al. [2],
signal information can be approximated effectively with few
low-frequency DCT components. DCT is often used in signal,
image and speech compression applications due to its strong
energy compaction ability. For example, Davis et al. [5]
showed that perceptually related aspects of the short-term
speech spectrum contributed to superior performance of the
mel-frequency cepstrum coefficients in speech applications.
Inspired by these works, we employ DCT for compressing
information encoded in time-frequency domain over channels.
The 3D DCT coefficient matrix, B, is calculated as:

Bpqr = αpαqαr

L−1∑
l=0

M−1∑
m=0

N−1∑
n=0

Almn cos
π (2l + 1) p

2L

cos
π (2m+ 1) q

2M
cos

π (2n+ 1) r

2N
,

0 ≤ p ≤ L− 1, 0 ≤ q ≤M − 1, 0 ≤ r ≤ N − 1

where
αp =

{ 1√
L
, p = 0√

2
L , 0<p ≤ L− 1

αq =

{ 1√
M
, q = 0√

2
M , 0<q ≤ M − 1

αr =

{ 1√
N
, q = r√

2
N , 0<r ≤ N − 1



Here, L,M,N represent the number of spatial, time and
frequency steps, respectively. A is the 3-dimensional matrix
of power spectral features. Therefore, after computing 3D
DCT coefficients, we only use a sub-cube constructed by the
first n coefficients from each of 3 feature dimensions. The
feature vector for each trial will now contain n3 entries. In our
experiments, we assign n = 3 and the leading 27 coefficients
are used as MEG 3D-DCT features. These DCT features
incorporate information from the spatial, time and frequency
dimensions.

2) MEG temporal events (MEG–TE): Spectral power anal-
ysis for the output of the 102 magnetometer channels is
performed in an identical fashion as the gradiometer signals
to obtain the 3-D matrix as above. Then, we average the
spectral power over space and four major frequency bands
that are: theta (3-7 Hz), alpha (8-13 Hz), beta (14-29 Hz) and
gamma (30-45 Hz). ’Interesting’ MEG temporal events are
then calculated as the number of times the averaged spectral
power is above/below its mean ± standard deviation (std) for
each of the four frequency bands, and hence we get 8 features
in total.

3) hEOG features: The horizontal EOG signal has informa-
tion about eye movements, point-of-gaze and eye blinks. Mus-
cular facial activities and eye blinks appear as high frequency
components in the EOG signal. In this study, we employ simple
features like statistical measures of the signal and signal energy
as adopted from [13] and [22] (see table I) .

4) ECG features: Common features that are extracted
from the ECG signal are inter-beat interval (IBI), heart rate
(HR), and heart rate variability (HRV). HR generally reflects
emotional involvement, and it is also a commonly used feature
for detecting valence. HRV refers to the temporal changes in
consecutive IBI and it is useful for estimating the level of
stress in adults. We adopt the procedures employed in Kim
and André’s work [12] to localize the heart beats and using
this information, we extract IBI, HR, and HRV. We use the
statistical measure (see table I) over the three heart activity
information as features for classification.

5) Trapezius EMG: EMG is often used to analyze the
correlation between cognitive emotion and physiological reac-
tions [21]. In our experiment, we use bipolar electrodes that are
placed in contact with the skin above the the trapezius muscle
to measure the mental stress of users as in [12], [13]. We also
use some of the features employed by Kim and André [12]
and Koelstra et al. [13] (see table I).

B. Classification procedure

For each of the 18 subjects, we have 36 trials for movie
clips and 40 trials for music videos. Having extracted two
sets of MEG features, and three sets of peripheral physiology
features for each trial, we need to determine the affective
tag of a stimulus from these features. To this end, we solve
three binary classification problems- employing MEG features
to differentiate between (i) low versus high arousal, (ii) low
versus high valence and (iii) low vs high dominance.

To begin with, each stimulus needs to be assigned a
classification label. Given the large variability in the affective
ratings provided by different subjects, a number of studies

TABLE I. EXTRACTED FEATURES FROM EACH MODALITY

Modality Extracted Features

MEG 3D-DCT (27) the first 27 coefficients of the 3D-DCT transform over
the time-frequency spectral power.

MEG temporal events (8)
the percentage of times the spectral power outcome
is above/below its mean ± std for each of the four
frequency bands.

ECG (18)

mean, standard deviation, skewness, kurtosis of inter-
beat intervals (IBI), heart rate (HR), and heart rate
variability (HRV) over time. Moreover, the percentage
of times each of the IBI, HR, and HRV measurements
had a value above/below their mean ± std. is employed

Horizontal EOG (7)

energy of the signal, mean, standard deviation, skew-
ness, kurtosis of the signal samples over time as well
as the percentage of times the signal is above/below its
mean ± std.

Trapezius EMG (8)
energy of the signal, mean and variance of the signal
over time as well as the percentage of times the signal
is above/below its mean ± std.

TABLE II. DISTRIBUTION (NUMBERS AND %) OF SAMPLES IN
EACH CLASS WITH MEAN RATING-BASED STIMULUS LABELING.

Music video clips Movie video clips
Dimension High Low High Low
Arousal 22 (55%) 18 (45%) 22 (61.1%) 14 (38.9%)
Valence 22 (55%) 18 (45%) 19 (52.8%) 17 (47.2%)
Dominance 16 (40%) 24 (60%) 14 (38.9%) 22 (61.1%)

such as [13] adopt a subject-specific classification approach,
with participant-specific stimulus labels. While participant-
specific classification is also adopted in this work, we however
use a single label per stimulus based on the mean affective
rating provided by participants. To this end, the mean va-
lence/arousal/dominance rating provided by all subjects is used
as a threshold, and those ratings greater than or equal to the
threshold are assumed to correspond to the ’high’ label.

The distribution of ’high’ and ’low’ valence/arousal labels
for the music and movie stimuli is presented in Table II. For
both music and movie clips, the distribution of the ’high’
and ’low’ classes is unbalanced for both valence and arousal-
valence distribution for movies is the most balanced. Given this
unbalanced distribution of stimuli, we use F1-scores alongside
classification accuracies to report our classification results. For
classification, we use a linear SVM classifier with cost param-
eter C =1. We also adopt the leave-one-out cross validation
scheme– for each participant, we train the model with all-
but-one stimulus ratings and the corresponding physiological
responses, and use this model to predict the label of the
remaining stimulus.

V. EXPERIMENTAL RESULTS

Table III shows measured classification accuracy and F1-
scores for music videos and movie clips, respectively. To test
for significance, the F1-score distribution over participants
is compared to the 0.5 baseline using an independent one-
sample t-test. For movie clips, employing MEG 3D-DCT
features, above-chance F1 scores are achieved for arousal,
while statistically significant F1-scores are obtained for valence
and dominance using the MEG-TE features. These results
demonstrate that MEG signals effectively encode affective user
responses, and suggest that the information extracted from the
gradiometers and magnetometers are complementary in nature.



Employing a single label per stimulus, none of the classi-
fication results obtained with MEG features for music clips
are significant. In order to compare the results using our
framework with competing methods such as [13], we repeated
the classification experiments with subject-specific stimulus
labeling (denoted using SS). Classification results achieved
in [13] are also listed. In this situation, comparable results
are achieved for arousal classification– it is to be noted here
that 32 subjects are part of the study reported in [13], while
this work involves 18 subjects. Also, significant F1 scores are
obtained with peripheral physiological features in this case.

Superior classification performance is achieved with both
peripheral and MEG features for movie clips as compared to
music clips. We also noted in section III that the affective
ratings for movie stimuli are more consistent– both these
trends suggest that movie clips are more effective stimuli than
music clips for affective studies. Finally, better classification
performance is achieved with MEG features for arousal, while
peripheral features are found to be more effective for predicting
valence– these results are consistent with the trends observed
in [13].

TABLE III. ACC AND F1-SCORES OVER PARTICIPANTS FOR
MUSIC AND MOVIE CLIPS. STARS INDICATE WHETHER THE

F1-SCORE DISTRIBUTION OVER SUBJECTS IS SIGNIFICANTLY
HIGHER THAN 0.5.(∗ = p <0.05, ∗∗ = p <0.01, ∗∗∗ = p <0.001).

Movie clips Arousal Valence Dominance

Feature Type ACC F1 ACC F1 ACC F1

MEG 3D-DCT 0.61 0.60∗∗ 0.49 0.49 0.52 0.51

MEG–TE 0.50 0.49 0.57 0.57∗∗∗ 0.59 0.59∗∗∗

Peripheral 0.54 0.52 0.63 0.63∗∗∗ 0.54 0.53

Music clips Arousal Valence Dominance

Feature Type ACC F1 ACC F1 ACC F1

MEG 3D-DCT 0.51 0.50 0.53 0.53 0.52 0.51

MEG–TE 0.51 0.51 0.49 0.49 0.51 0.50

Peripheral 0.51 0.51 0.58 0.58∗∗∗ 0.53 0.52

MEG 3D-DCT (SS) 0.57 0.56∗∗∗ 0.52 0.52 0.51 0.49

MEG–TE (SS) 0.52 0.51 0.49 0.48 0.52 0.51

EEG [13] 0.62 0.58∗∗ 0.58 0.56∗∗

Peripheral (SS) 0.51 0.50 0.56 0.55* 0.49 0.46

Peripheral [13] 0.57 0.53∗ 0.63 0.61∗∗

VI. CONCLUSION AND THE FUTURE WORK

In this work, we have attempted affective tagging of music
and movie videos through a user-centric approach employing
MEG and peripheral physiology signals. Classification results
are reported on data compiled from 18 users for a database
comprising 40 music and 36 movie clips– one of the largest
reported in literature. Obtained classification results suggest
that MEG signals effectively encode affective viewer responses
and are more useful for predicting stimulus arousal. As part
of future work, we intend to (i) extend the current study by
involving more subjects and using full-length movies, and (ii)
develop an effective methodology for fusing the information
from MEG and peripheral signals for better affect prediction.
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