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Abstract. Action recognition has received increasing attention during
the last decade. Various approaches have been proposed to encode the
videos that contain actions, among which self-similarity matrices (SSMs)
have shown very good performance by encoding the dynamics of the
video. However, SSMs become sensitive when there is a very large view
change. In this paper, we tackle the multi-view action recognition prob-
lem by proposing a sparse code filtering (SCF) framework which can mine
the action patterns. First, a class-wise sparse coding method is proposed
to make the sparse codes of the between-class data lie close by. Then we
integrate the classifiers and the class-wise sparse coding process into a
collaborative filtering (CF) framework to mine the discriminative sparse
codes and classifiers jointly. The experimental results on several public
multi-view action recognition datasets demonstrate that the presented
SCF framework outperforms other state-of-the-art methods.

1 Introduction

Action recognition has wide applications, such as human-computer interactive
games, search engines, and online video surveillance systems. Videos can be
summarized by labels if the actions can be annotated automatically. Then a
search engine can make better recommendations (e.g., finding dunks in basket-
ball games). Usually, the same action observed from different viewpoints has
considerable differences. Therefore, an efficient method to extract robust view-
invariant features is essential for multi-view action recognition. The features can
be roughly grouped into two types, the 2D features [1] and 3D features [2].

Many works employed 3D models to tackle the multi-view action recognition
problem. First, the geometric transitions are utilized to obtain projections across
different viewpoints. Then the observations are compared with the projections
to find the viewpoint that best matches the observations [3]. However, how to
accurately find body joints to build the 3D model remains an open problem. Be-
sides, the built model has too many degree-of-freedom parameters, which must
be carefully calibrated. Moreover, the model requires high resolution videos to
locate body joints and sometimes may require mocap data [4]. An alternative so-
lution for multi-view action recognition is to design view-invariant 2D features.
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Farhadi et .al [5] proposed split-based representations by clustering the simi-
lar video frames into splits. The split-based representations can be transferred
among different viewpoints as the change dynamics of the multi-view videos are
the same. Similarly, Junejo et. al [6] employed SSMs to encode the frame-to-
frame relative changes. However, the SSMs are robust to view changes only to a
certain extent.
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Fig. 1. Overview of sparse code filtering: (top) Class-wise sparse coding. (middle) Col-
laborative Filtering. (bottom right) Sparse code filtering framework. (bottom left) La-
bel prediction.

In this paper, to tackle the multi-view problem, we propose a class-wise sparse
coding approach to maintain label consistency. We employ SSM feature to repre-
sent each video. The sparse coding learns a dictionary from SSM representations
of the video collections. The dictionary consists of typical action patterns, and
each video is encoded to a code as a linear combination of action patterns. The
label consistency is achieved by penalizing the within class variance of the codes.
Thus, the codes of the within-class videos will lie close by, and accordingly, only
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the view-invariant action patterns will be learned while the view-dependent in-
formation will be suppressed. Then we rely on the codes as video features to do
action classification.

To further improve the discriminative power of the codes, we integrate the
class-wise sparse coding and classifiers training process into a unified CF frame-
work as shown in Fig.1. This is because CF can link the dictionary and classifiers
together which can optimize them jointly. The dictionary can be adjusted for
the classifiers while the classifiers can be adjusted for the dictionary collabora-
tively. In this way, the learned action patterns in the dictionary can be more
discriminative with respect to different actions. Thus, we derive a novel sparse
code filtering framework. In the sparse code filtering scheme, each action class
is regarded as an user. For the classical collaborative filtering, the entry in the
rating matrix (e.g., ranges from 0 to 5) describes how much a user likes the
product. In our scheme, however, the entry in the rating matrix, ranging from
0 to 1, represents the probability that a video belongs to an action class. The
sparse code filtering framework provides a trade-off between the dictionary re-
construction error and the classification error which derive from the class-wise
sparse coding and the logistic classifiers respectively.

To summarize, our work makes the following contributions: (i) We propose a
class-wise sparse coding approach to maintain the label consistency by encour-
aging the sparse codes of the multi-view videos within the same action class to
lie close by. (ii) We propose a novel sparse code filtering framework in which
the classifiers and dictionary can be optimized collaboratively. Thus, the view-
invariant and class-discriminant sparse codes can be learned. (iii) The proposed
sparse code filtering framework has a good generalization property and can be
applied to other pattern recognition tasks.

2 Related Work

2.1 Action Recognition

Many 3D and 2D based approaches are proposed for action recognition. Through
reconstructing 3D human bodies, features can be adapted across different view-
points through geometric transformation. Weinland et .al [7] projected 3D poses
into 2D to obtain arbitrary views and employed an exemplar-based HMM to
model view transformations. A similar idea is proposed in [8] which employed
CRF instead of HMM. Except for designing the 3D models, some works focus on
designing view-invariant classifiers, such as linear discriminant analysis [9] and
latent multi-task learning [10]. Matikainen et. al [11] suggested training models
for all the views and then utilizing recommender system to find the suitable
model. But the approach in [11] requires huge amount of training samples from
different viewpoints. Recently, the recurrent neural network is also applied for
the action recognition task [12] as it is good at dealing with signal sequences with
various lengths [13, 14]. However, these methods can only tackle the single-view
action recognition task.
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Fig. 2. SSM features extracted from different views.

To achieve view invariance in 2D models, many works try to extract view-
invariant features. Farhadi et. al [5] proposed a split-based representation by
clustering video frames into splits. Then videos can be represented by the statis-
tics of the splits, and the split transfer mapping across views can be learned.
Based on 2D features, the transfer learning model requires no 3D human re-
constructions. Recently, a more robust view-invariant descriptor, self-similarity
matrix (SSM) [6] has been proposed. It is relatively stable over the viewpoint
changes compared with other features [15]. Similarly to [5], this descriptor en-
codes the relative changes between pairs of frames, and completely discards the
absolute features of each single frame. SSMs can be calculated using different
low-level features which have similar properties.

Fig.2 shows the examples from the action videos and their corresponding
SSM features. From Fig.2, we can observe that the SSM features from the 4 side
cameras are visually similar, while the feature from camera 5 (on the ceiling)
is quite different. Yan et. al [9] revealed that SSMs became less reliable when
there was a very large view change. Based on SSMs, Joint Self-Similarity Volume
(SSV) was introduced by [16] which utilized Joint Recurrence Plot (JRP) theory
to extend SSM. But different from [15], the SSM defined in [16] is the recurrence-
plot matrix of the vector representation of each single frame.

2.2 Sparse Coding

Sparse coding, also known as dictionary learning, aims to construct efficient rep-
resentations of data as a combination of a few typical patterns (dictionary bases).
Wang et. al [17, 18] used the sparse coding for attribute detection. Raina et. al
[19] showed that sparse coding significantly improved classification performance.
[20] employed sparse coding for action recognition from depth maps. However,
their approach is restricted to the videos which can provide depth information.
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Qiu et. al [21] selected a set of more compact and discriminative bases from the
dictionary using Gaussian Process. Guha et. al [22] investigated different sparse
coding strategies, namely, an overall dictionary for all the classes, different dic-
tionaries for each class, and their concatenation. But view changes were not
considered. Zheng et. al [23] proposed view-specific sparse coding. But sufficient
training data from each viewpoint are required. Besides, the label information
is discarded. Thus, it can not preserve label consistency. In our work, we add
within-class variance into the loss function to preserve the label-consistency. The
learned class-wise dictionary can be considered as a more label-smooth feature
space compared with the original video feature space.

2.3 Collaborative Filtering

Collaborative filtering is widely used in recommendation systems of commercial
websites, such as Amazon and eBay, to recommend products to their consumers.
The most attractive characteristic of CF is that it can learn a good set of features
automatically [24], which does not require hand-designed features. Taking the
movie recommendation system for example, each movie has its own features and
each user has its own specific feature preference weights. Given the movie-user
rating matrix, CF learn a good set of features for each movie and feature prefer-
ence weights for each user jointly. During the CF learning process, the features
will be adjusted for the feature preference weights for each user, and feature pref-
erence weights will also be adjusted for the features iteratively. Inspired by the
movie recommendation system, we employ a CF framework to learn class-wise
dictionary and classifiers jointly. Thus, the codes and classifiers can be adjusted
to better fit each other. The experimental results demonstrate the effectiveness
of our framework.

The rest of the paper is organized as follows. We propose the class-wise
dictionary learning approach in the Section 3. Section 4 presents our sparse code
filtering scheme. The experiments are described in Section 5. We conclude our
paper in Section 6.

3 Class-wise Sparse Coding

The input of the sparse model is the descriptors for nv videos, where each video
is represented by a d-dimension vector xd. Let Xd×nv

be the matrix by stacking
the all the training video descriptors. In our model, xd is the SSM feature. The
outputs are the dictionary D and sparse codes C. The loss of the classical sparse
coding model, which considers reconstruction error and sparsity, is defined as:

L(X;D,C)=‖X−DC‖2F + α

nv∑

i=1

‖c(i)‖1 (1)

In Eq. 1, Dd×n represents the learned dictionary and each column vector in
the dictionary represents a typical action pattern, n is the number of typical
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patterns, Cn×nv
is the sparse code matrix, whose i-th column, c(i), is the sparse

code of sample i. l1-norm is a lasso constraint which encourages sparsity, and α
balances the reconstruction error and the sparsity penalty.

In order to mine the view-invariant patterns of the SSM feature, we propose a
class-wise sparse coding method to encourage the sparse codes of the multi-view
within-class videos to lie close by. The closeness is measured by the within-class
variance. Given the class labels of the training data, we try to reduce the within-
class variance during the learning process. The within-class variance is measured
by the Euclidean distance between the videos and their class center. The loss of
the class-wise sparse coding model is defined as follows,

L(X;D,C) + β

K∑

s=1

‖C(s)−C̄s‖2F (2)

The second term in Eq. 2 measures the within-class variance. This term
enforces the multi-view within-class videos to have similar sparse codes. K is
the number of action classes. C(s) represents a video collection. s is the class
index. Each column vector in C(s) is the sparse code of the video which belong
to action class s. Each column vector in C̄s is the mean of all the column vectors
in C(s). C̄s has the same size as C(s). β is the weight of within-class variance
penalty.

4 Sparse Code Filtering

4.1 Joint Action Learning

The input to our learning scheme is (1) the learned sparse codes for nv videos,
each represented as a n-dimension vector c(i)∈Rn, i = 1, 2, ..., nv. (2) the binary
action label matrix for all the videos, which is represented as Ynv×na

, na is the
number of actions. The item y(i,j), is either 1 or 0, which denotes whether or
not video i belongs to action class j.

We learn all action classifiers simultaneously in a multi-task learning set-
ting, where each task represents one action. The output is the parameter matrix
Θn×na

whose column vector θ(j) denotes the parameters of the classifier of ac-
tion j. In our model, we employ logistic regression classifiers. Given the sparse
code matrix and binary action label matrix (Cn×nv ,Ynv×na), the loss function
is defined as:

L(C,Y; Θ)=
∑

i,j

log(1+exp((1−2y(i,j))(θ(j))T c(i))) (3)

Each action classifier has an tuple θ(j) whose element θ
(j)
k corresponds to

the weight of the sparse code which is tied to the k-th typical pattern in the
dictionary.
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4.2 Formulation of Sparse Code Filtering

Usually, the dictionary and classifiers are trained separately. Thus, there is no
guarantee that the learned patterns in the dictionary can serve the classification
task well. In order to mine the class-discriminative action patterns, we propose
a sparse code filtering (SCF) scheme. In our scheme, the prediction function is
logistic function whose output denotes the probability that a video belongs to an
action. Besides, the parameters are learned by minimizing both the dictionary
reconstruction error and classification error. Thus, the dictionary and classifiers
are optimized jointly. The learned sparse codes are expected to be view-invariant
and class-discriminative. By integrating all the tasks, we can obtain the following
loss function:

L(X,Y;D,C,Θ)=L(X;D,C)+γL(C,Y; Θ)+β

K∑

s=1

‖C(s)−C̄(s)‖2F +λ‖Θ‖2F (4)

In Eq. 4, γ balances the dictionary reconstruction error and the classification
error, the Frobenius norm of Θ is employed to prevent overfitting. By minimizing
the loss function, Eq. 4, a view-invariant and class-discriminative dictionary D,
and an action classification parameter matrix Θ are learned jointly.

Optimization The input of the SCF framework is video descriptor matrix and
binary action label matrix: [X,Y]. The outputs are the dictionary, sparse codes,
and parameter matrix for the classifiers: [D,C,Θ]. We propose the following
algorithm (Alg. 1) to solve the framework. When only one variable is left to
optimize and the rest are fixed, the problem becomes convex. Thus, we optimize
the variables alternatively by fixing the rest.

Initialization in Algorithm 1: we employ k-means clustering to find k centroids
as the bases in dictionary D0. Θ0 and C0 are set to 0.

The loop in Algorithm 1 consists of three parts:

1. Fix C, Θ, Optimize D. In Eq. (4), only the first term is related to D, and
it is a least square problem when the other parameters are fixed. By setting
the derivative of Eq. (4) equal to 0 with respect to D, we can obtain:

(DC−X)CT =0⇒ D=XCT (CCT )−1 (5)

Then we employ the following equation to update D:

D = XCT (CCT + λI)−1 (6)

λ is a small constant and it guarantees that the matrix CCT +λI is invertible
in case CCT is singular.
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Algorithm 1: Solution Structure

1: Initialization: D← D0 , C← C0 , Θ← Θ0

2: repeat
3: fix D,Θ, update C:
4: for C(s) ∈ C do
5: ratio← 1
6: while ratio > threshold do
7: run FISTA(modified)
8: update ratio
9: end while

10: end for
11: fix D,C, update Θ:
12: parallelgradientdescent
13: fix C,Θ, update D:
14: least− squaressolution
15: until converges

2. Fix D, C, Optimize Θ. When D & C are fixed, we employ the parallel
gradient descent method to tackle the problem. Since θ(j) are independent
from each other, we optimize them in parallel. The updating formula is as
follows:

θ(j) = θ(j) − δ ∂

∂θ(j)
L(X,Y;D,C,Θ) (7)

3. Fix D, Θ, Optimize C. Beck et. al [25] proposed the Fast Iterative Soft-
Thresholding Algorithm (FISTA) to solve the classical dictionary learning
problem. A soft-threshold step is incorporated into FISTA to guarantee the
sparseness of the solution. The complexity for the classical ISTA method is
O(1/k), in which k denotes the iteration times. FISTA converges in function
values as O(1/k2), which is much faster. FISTA optimizes c(i)∈C indepen-
dently. However, in our model, c(i) and c(j) within the same action class
depend on each other. Thus, c(i), c(j) must be updated jointly until all of
them converge. Thus, we decompose our objective function and modify the
original FISTA algorithm to tackle the decomposed sub-objectives.
In Eq. (4), the sparse code matrices with respect to different action classes
are independent. Thus, when updating C = [C(1), ...,C(K)], we decompose
the objective function into K sub-objectives, shown as follows:

min
C

K∑

s=1

L(C(s)) =

K∑

s=1

min
C(s)

L(C(s)) (8)

Thus, the original objective function is decomposed into K sub-objective
functions with respect to each action class. The following shows the details
of the deduction of decomposition of Eqn. 4. The first two terms in Eqn. 4
can be reformulated as follows:
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{
L(X;D,C) =

∑K
s=1

(
‖DC(s)−X(s)‖2+α‖C(s)‖1

)

L(C,Y; Θ) =
∑K

s=1

∑na

j=1 log(1+exp(1−2y(i,j))(θ(j))TC(s))
(9)

Putting the transformed terms from Eq. (9) back into the loss function
Eq. (4), we can obtain a new form of the objective function. Because D
and Θ are fixed, the term λ‖Θ‖2F becomes a constant. By removing the
constant term, we can obtain the loss function as Eq. (8) where

L(C(s))=‖DC(s)−X(s)‖2F +α‖C(s)‖1+β‖C(s)−C̄s‖2F

+ γ

na∑

j=1

log(1+exp(1− 2y(i,j))(θ(j))TC(s))
(10)

The modified FISTA algorithm is applied to solve the sub-objective func-
tions. The details of the modified FISTA algorithm is as follows:
In the classical dictionary learning model, the sparse codes of training data
are independent from each other. Thus, each c can be optimized indepen-
dently. However, our new sub-objective needs to optimize a group of train-
ing data jointly because these data have dependencies among each other
as shown in Eq. (10). For training data x(i)∈X(s) in the equation above, its
sparse code c(i) (c(i)∈C(s)) dependents on other c(k) (c(k)∈C(s)). We modify
the classical FISTA algorithm to optimize the sub-objectives jointly.
When update C(s), instead of updating c(i) independently, all c(i) ∈ C(s)

are updated simultaneously using the following form,

c(i) := c(i) − δ ∂L

∂c(i)
(11)

This updating procedure of C(s) will repeat until it converges. Then we
apply a soft-threshold step to set the entries in C(s) whose absolute value
is less than the threshold to 0. We repeat the process above until the whole
algorithm converges.

Label Prediction As shown in Fig.1, in the classical CF framework, when the
features of a new movie are given, its ratings by different users can be predicted
based on the movie features and the learned feature preference weights. The
basic underlying assumption of CF is that users will rate movies which share the
similar features with similar scores [26] as we assume that the preferences of the
users remain the same. Similarly, each action class can be regarded as one user,
and the action videos can be regarded as the movies. The label prediction for a
new video x consists of two steps: sparse coding and probability calculation.

c∗ = argc min L(x,D; c) (12)

label = argj max 1/
(
1 + exp((−θ(j))T · c∗)

)
(13)
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First, given the dictionary D, and video descriptor x which is the SSM fea-
ture, the sparse code c∗ of the new video is calculated by solving the classical
sparse coding model as shown in Eq. (12). Then the probability that the new
video belongs to action class j can be calculated. The action label is the one
which maximizes the probability as shown in Eq. (13).

5 Experiments and Results

5.1 Datasets

We evaluate our framework on three largest public multi-view action recognition
datasets, as shown in Fig.3, which are the IXMAS dataset [27], the NIXMAS
dataset, and the OIXMAS dataset [28] in which the actions are partially oc-
cluded. IXMAS dataset consists of 12 action classes, (e.g., check watch, cross
arms, scratch head, sit down, get up, turn around, walk, wave, punch, kick, point
and pick up). Each action is performed 3 times by 11 actors and is recorded by
5 cameras which observe the actions from 5 different viewpoints. The NIXMAS
dataset is recorded with different actors, cameras, and viewpoints, and about
2/3 of the videos have objects which partially occlude the actors. Overall, it
contains 1148 sequences.

OIXMAS

NIXMAS

IXMAS

Fig. 3. Multi-view action recognition datasets.

5.2 Implementation Details

The sparse code filtering is based on SSM descriptors using HOG/HOF fea-
tures to describe each individual frame. Each video is represented by a 500-
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dimension vector. Fig.2 shows an example from IXMAS dataset and the corre-
sponding extracted SSM feature. In our experiments, the dictionary size is set to
[600, 700, ..., 1000], and all regularization parameters α, β, γ, λ are tuned from
[10−3, 10−2, ..., 103].

We employ two settings for the experiment, which are multi-view setting
and cross-view setting. For the multi-view setting, we have access to the videos
from all the viewpoints for training, and use the standard experimental protocol
described in [29]: two-thirds and one-third split for training and testing. This
experimental protocol is widely used for action recognition. For the cross-view
setting, one camera view is missing in the training data and we train the model
using the data from other four camera views. Then we perform prediction on
the missing view.

5.3 Baselines

To evaluate the contribution of the class-wise sparse coding (CWSC), we put the
raw features and the codes into two classification scheme: (1) standard radial
basis kernel SVM [6] which learns each action classifiers separately, and (2) the
multi-task learning approach [9] which learns the action classifiers jointly. The
codes and the classifiers are learned separately. We name the two baselines which
take the codes as input as (3) CWSC+SVM, and (4) CWSC+MTL, and they are
employed as baselines. Then through the comparison between (CWSC+MTL)
and our SCF framework, we can observe the extra gain we obtained by training
the class-wise dictionary and classifiers jointly. (5) We also choose some other
action recognition baselines, such as [30], [9], and [29].

5.4 Results

Multi-view Action Recognition. For the multi-view setting, we use the stan-
dard two-thirds and one-third split for training and testing. Table 1 shows the
mean action recognition accuracy of all the cameras using different approaches.

We observe that the baselines CWSC+SVM and CWSC+MTL outperform
SVM and MTL with raw features respectively. This indicates that the class-wise
sparse coding can help encode the view-invariant action patterns which preserve
the label consistency. From Table 1, we can also observe that our method has
the best performance. This is because our sparse code filtering scheme opti-
mizes the classifiers and dictionary jointly, and it helps learn a class-wise label-
discriminative dictionary. Fig.4 shows some qualitative results on IXMAS dataset
for our proposed SCF framework and multi-task learning approach for multi-view
action recognition.

Cross-view Action Recognition Table 2, 3 and 4 show the performances of
different approaches on IXMAS, OIXMAS, and NIXMAS dataset.

From Table 2, 3 and 4, we can observe that our framework achieves better
performance compared with other baselines which shows the effectiveness of our
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Table 1. Multi-view action recognition accuracy of different approaches for 3 datasets.

Methods IXMAS OIXASM NIXMAS

SVM [6] 0.6425 0.4809 0.5680
CWSC+SVM 0.6537 0.5235 0.6026
MTL [9] 0.6883 0.5608 0.6163
CWSC+MTL 0.6889 0.6082 0.6228
Farhadi et. al [5] 0.5810 - -
Huang et. al [29] 0.5730 - -
Liu et. al [31] 0.7380 - -
Reddy et. al [32] 0.7260 - -
Li et. al [30] 0.8120 - -
Baumann et. al [33] 0.8055 - -
Ashraf et. al [34] 0.8140 - -
SCF 0.8594 0.7803 0.8083

Sit
Down

Check 
Watch

Sparse Code Filtering Multi-task LearningAction

Fig. 4. Qualitative results on IXMAS dataset.

Table 2. Cross-View action recognition performance on the IXMAS dataset

Missing Viewpoints
Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et. al [6] 0.6663 0.6554 0.6500 0.6243 0.4963 0.6185
CWSC+SVM 0.6880 0.6577 0.6701 0.6187 0.5110 0.6291
Yan et. al [9] 0.7554 0.7462 0.7710 0.6973 0.6332 0.7206
CWSC+MTL 0.7559 0.8257 0.8003 0.7759 0.6417 0.7599
SCF 0.8285 0.8322 0.8053 0.7941 0.7384 0.7997

learned dictionary. It is also interesting to notice that the fifth camera always
has low action recognition accuracy regardless of the classification methods. One
reasonable explanation is that the fifth camera is placed on the ceiling, and the
motion dynamics of different actions observed from this camera are visually
similar with each other.
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Table 3. Cross-View action recognition performance on the OIXMAS dataset

Missing Viewpoints
Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et. al [6] 0.5639 0.6250 0.5472 0.4677 0.4423 0.5292
CWSC+SVM 0.5688 0.6477 0.6001 0.5087 0.4511 0.5553
Yan et. al [9] 0.5422 0.6540 0.5070 0.5171 0.4730 0.5387
CWSC+MTL 0.5535 0.6826 0.5366 0.5401 0.4867 0.5599
SCF 0.6080 0.6980 0.6573 0.6957 0.5850 0.6512

Table 4. Cross-View action recognition performance on the NIXMAS dataset

Missing Viewpoints
Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et. al [6] 0.6410 0.6532 0.5912 0.5924 0.5322 0.6020
CWSC+SVM 0.6759 0.6951 0.6226 0.6387 0.5560 0.6377
Yan et. al [9] 0.7170 0.6993 0.7542 0.6911 0.6792 0.7082
CWSC+MTL 0.7198 0.7391 0.7559 0.7176 0.6879 0.7240
SCF 0.8080 0.7980 0.7573 0.7357 0.7050 0.7608

5.5 Parameter Tuning
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Fig. 5. Sensitivity study of different regularization parameters on IXMAS dataset.

Fig.5 shows the sensitivity study of regularization parameters γ, α, β and
λ. In our model, γ balances the dictionary learning loss and the classification
loss, α balances the reconstruction error and the sparsity penalty, β provides
the trade-off between the dictionary reconstruction loss and intra-class variance
penalty, and λ is employed to prevent overfitting of the classifiers. The optimal
classification performance can be obtained when dictionary size is set to 800.
We observe that the performance changes little (within 0.0015) when we set
λ to the different values. So we focus on the other 3 parameter. As shown in
Fig.5(a), when γ is fixed, the mean accuracy varies subtly along the axis of β.
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However, when β is fixed, the mean accuracy changes dramatically along the
axis of β. Thus, γ is more sensitive than β. Similarly, Fig.5(b) shows that α is
more sensitive than β, and Fig.5(c) shows that γ is more sensitive than α. Thus,
we obtain the importance of these parameters γ>α>β>λ.
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Fig. 6. Convergence of the sparse code filtering algorithm on IXMAS dataset.

We also analyzes the convergence of our algorithm. Fig.6 plots the conver-
gence curves of the objectives. Fig.6(b) shows that Alg. 1 converges in 30 it-
erations. Fig.6(a) plots the convergence curves when updating C(s) for action
classes. It shows that the class-wise dictionary learning converges very fast.

6 Conclusion

In this paper, we propose a novel sparse code filtering framework for multi-view
action recognition. First, a class-wise dictionary is learned by encoding label in-
formation into the sparse coding process. We integrate class-wise sparse coding
and classifier learning into a CF framework. Thus, the classifiers and dictionary
are optimized jointly, and they can be adapted for each other. The extensive
experimental results illustrate that our proposed method outperforms other im-
portant baselines for multi-view action recognition. In the future work, we will
take the correlation between the classifiers into consideration. For example, we
can suppress the urge of feature sharing between classifiers by adding a l1 norm
penalty to the classifier parameters.
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